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Abstract- Diseases classification using gene expression data is 
known to include the keys for addressing the fundamental 
harms relating to diagnosis and discovery. The recent 
introduction of DNA microarray technique has complete 
simultaneous monitoring of thousands of gene expressions 
possible. With this large quantity of gene expression data, 
researchers have started to discover the possibilities of 
disease classification using gene expression data. Quite a 
number of methods have been planned in recent years with 
hopeful results. But there are still a lot of issues which need to 
be address and understood. In order to gain insight into the 
disease classification difficulty, it is necessary to take a closer 
look at the problem, the proposed solutions and the associated 
issues all together. In this paper, we present a comprehensive 
clustering method and classification method such as Spatial 
Expectation Maximization, Support Vector classification and 
estimate them based on their calculation time, classification 
accuracy and ability to reveal biologically meaningful gene 
information. Based on our multiclass classification method to 
diagnosis the diseases and also find severity levels of diseases. 
Our experimental results show that classifier performance 
through graphs with improved accuracy. 
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I. INTRODUCTION 
 

The recent initiation of microarray technologies has 
enabled biologists for the first time to concurrently monitor 
the activities of thousands of genes, constructing large 
quantities of complex data. Analysis of such data is becoming 
a main feature in the successful utilization of the microarray 
technology. Microarrays are tiny glass surfaces or chips, onto 
which microscopic amounts of DNA are attached in a grid 
layout. Each of the tiny spots of DNA relates to a single gene. 
The Structure of DNA is illustrated in fig 1. 

 
Fig 1: Structure of DNA 

 
A, T, G, and C are the 'letters' of the DNA code and 

symbolize the chemicals adenine, thymine, guanine, and 
cytosine, respectively. These make up the nucleotide bases of 
DNA. Each gene's code merges these four chemicals in 
various ways to spell out three-letter 'words' that specify 
which amino acid is desired at every step in making a protein. 
The discovery of the genetic code ranks as one of the premiere 
events of biology and medicine. One of the most popular 
microarray applications is to compare gene expression levels 
in two dissimilar samples (e.g. healthy and diseased cells). 
RNA from the cells in the two different conditions are 
extracted and labeled with diverse fluorescent dyes (e.g. green 
for healthy and red for diseased cells). Both RNA are washed 
over the microarray. Gene patterns preferentially bind to their 
complementary sequences. The dyes allow measurement of 
the amount leap at each spot, in order to estimate the presence 
of genes. The microarray images are analyzed and the 
intensities considered. Finally, a gene expression matrix is 
obtained where rows correspond to genes and columns 
represent samples (i.e. unusual experimental conditions - 
stages, treatments, or tissues), and the numbers are the 
expression stage of the genes in the respective samples. In 
order to extract meaningful information from this data, data 
mining techniques are being employed. One goal in analyzing 
microarray data is to find genes which behave similarly over 
the course of a test by comparing rows in the expression 
matrix. These genes may be co-regulated or related in their 
function. Similar genes can be found by clustering methods.  
And gene patterns are classified by classification methods. 
These methods are used to predict diseases based predefined 
gene patterns and describe the patterns in following fig 2. 
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Fig 2: Gene Expression. 

 
Gene expression is the process by which information 

from a gene is used in the synthesis of a functional gene 
product. These products are often proteins, but in non-protein 
coding genes such as transfer RNA (tRNA) or small nuclear 
RNA (snRNA) genes, the product is a functional RNA. The 
process of gene expression is used by all known life - 
eukaryotes (including multi-cellular organisms), prokaryotes 
(bacteria and archaea), and utilized by viruses - to generate the 
macromolecular machinery for life. 

 
Several steps in the gene expression process may be 

modulated, including the transcription, RNA splicing, 
translation, and post-translational modification of a protein. 
Gene regulation gives the cell control over structure and 
function, and is the basis for cellular differentiation, 
morphogenesis and the versatility and adaptability of any 
organism. Gene regulation may also serve as a substrate for 
evolutionary change, since control of the timing, location, and 
amount of gene expression can have a profound effect on the 
functions (actions) of the gene in a cell or in a multi-cellular 
organism. 

 
In genetics, gene expression is the most fundamental 

level at which the genotype gives rise to the phenotype, i.e. 
observable trait. The genetic code stored in DNA is 
"interpreted" by gene expression, and the properties of the 
expression give rise to the organism's phenotype. Such 
phenotypes are often expressed by the synthesis of proteins 
that control the organism's shape, or that act as enzymes 

catalyzing specific metabolic pathways characterizing the 
organism. 
 

II. RELATED WORK 
 
Wai-Ho Au,et.al. [1] presented an attribute clustering 

method which is able to group genes based on their 
interdependence so as to excavate meaningful patterns from 
the gene expression data. It could be used for gene grouping, 
selection and classification. The separation of a relational table 
into attribute subgroups permits a small number of attributes 
within or crosswise the groups to be selected for analysis. By 
clustering attributes, the search for dimension of a data mining 
algorithm is abridged. The reduction of search dimension is 
particularly important to data mining in gene expression data 
because such data typically contains of a huge number of 
genes (attributes) and a small number of gene expression 
profiles (tuples).The majority data mining algorithms are 
typically developed and optimized to balance to the number of 
tuples as a substitute of the number of attributes. The situation 
becomes even inferior when the number of attributes 
overwhelms the numeral of tuples, in which case, the 
likelihood of reporting patterns that are actually irrelevant due 
to chances becomes rather high. 

 
Wolfgang Huber,et.al. [2] reviewed the methods 

utilized in processing and study of gene expression data 
generated using DNA microarrays. This type of research 
permits determining relative levels of mRNA abundance in a 
place of tissues or cell populations for thousands of genes 
simultaneously. Naturally, such an experiment needs 
computational and numerical analysis techniques. At the 
outset of the processing pipeline, the computational 
procedures are mostly determined by the knowledge and 
experimental setup that are used. Subsequently, as more 
consistent intensity values for genes emerge, pattern discovery 
methods arrive into play. The most striking peculiarity of this 
kind of data is that one usually obtains capacity for thousands 
of genes for only a much smaller number of conditions. 

 
Marcel Dettling,et.al.[3] presented a promising 

innovative method for searching functional groups, each made 
up of only a few genes whose consensus expression profiles 
presents useful information for tissue discrimination. Due to 
the combinatorial difficulty when clustering thousands of 
genes rely on a greedy strategy. It optimizes an experiential 
objective function that quickly and competently measures the 
cluster’s ability for phenotype discrimination. The output of 
our algorithm is thus potentially important for cancer type 
diagnosis. At the same time it is very accessible for 
interpretation, since the output consists of a very partial 
number of clusters, each summarizing the information of small 
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amount of genes. Thus, it may also expose insights into 
biological processes and give hints on explaining how the 
genome works. 

 
Trevor Haste,et.al [4] addressed the problem of 

analyzing such data, then explain a statistical method, which 
they have called ‘gene shaving’. The method recognizes 
subsets of genes with coherent expression patterns and large 
distinction across conditions. Gene shaving diverges from 
hierarchical clustering and other widely used methods for 
analyzing gene expression studies in that genes may belong to 
extra than one cluster and the clustering may be supervised by 
a result measure. The technique can be ‘unsupervised’, that is, 
the genes and models are treated as unlabeled, or partially or 
fully supervised by using known properties of the genes or 
samples to help in finding meaningful groupings. Illustrate the 
use of the gene shaving method to investigates gene 
expression measurements made on samples from patients with 
diffuse large B-cell lymphoma. The method classifies a small 
cluster of genes whose expression is highly predictive of 
survival. 

 
Chris Ding,et.al [5] proposed a minimum redundancy 

maximum relevance (MRMR) feature selection framework. 
Genes selected via MRMR provide a more balanced coverage 
of the space and detain broader characteristics of phenotypes. 
They lead to significantly improved class predictions in 
extensive experiments on five gene expression data sets: NCI, 
Lymphoma, Lung, Leukemia and Colon. Improvements are 
observed consistently among four classification methods: 
Naïve Bayes, Linear discriminate analysis, Logistic regression 
and Support vector machines. 

 
Hanchuan Peng,et.al [6] present a theoretical analysis 

showing that mRMR is equivalent to Max-Dependency for 
first-order feature selection, but is more efficient. Second, 
investigate how to combine mRMR with other feature 
selection methods into a two-stage selection algorithm. By 
doing this, Then show that the space of candidate features 
selected by mRMR is more characterizing. This property of 
mRMR facilitates the integration of other feature selection 
schemes to find a compact subset of superior features at very 
low cost. Third, through comprehensive experiments, compare 
mRMR, Max-Relevance, Max-Dependency, and the twostage 
feature selection algorithm, using three different classifiers 
and four data sets. 

 
Roberto Battiti,et.al [7] investigated the application 

of the mutual information criterion to evaluate a set of 
candidate features and to select an informative subset to be 
used as input data for a neural network classifier. Because the 
mutual information measures arbitrary dependencies between 

random variables, it is suitable for assessing the “information 
content” of features in complex classification tasks, where 
methods bases on linear relations (like the correlation) are 
prone to mistakes. The fact that the mutual information is 
independent of the coordinates chosen permits a robust 
estimation. Nonetheless, the use of the mutual information for 
tasks characterized by high input dimensionality requires 
suitable approximations because of the prohibitive demands 
on computation and samples. An algorithm is proposed that is 
based on a “greedy” selection of the features and that takes 
both the mutual information with respect to the output class 
and with respect to the already-selected features into account. 

 
D. Nguyen,et.al [8] proposed a novel analysis 

procedure for classifying (predicting) human tumor 
samples based on microarray gene expressions. This 
procedure involves dimension reduction using Partial 
Least Squares (PLS) and classification using Logistic 
Discrimination (LD) and Quadratic Discriminate 
Analysis (QDA). We compare PLS to the well known 
dimension reduction method of Principal Components 
Analysis (PCA). Under many circumstances PLS proves 
superior; we illustrate a condition when PCA 
particularly fails to predict well relative to PLS. The 
proposed methods were applied to five different 
microarray data sets involving various human tumor 
samples: (1) normal versus ovarian tumor; (2) Acute 
Myeloid Leukemia (AML) versus Acute Lymphoblastic 
Leukemia (ALL); (3) Diffuse Large B-cell Lymphoma 
(DLBCLL) versus B-cell Chronic Lymphocytic 
Leukemia (BCLL); (4) normal versus colon tumor; and 
(5) Non-Small-Cell-Lung-Carcinoma (NSCLC) versus 
renal samples. Stability of classification results and 
methods were further assessed by re-randomization 
studies. 
 

III. GENE CLUSTERING 
 
K means clustering: 
 

The main objective in cluster analysis is to group 
objects that are similar in one cluster and separate objects that 
are dissimilar by assigning them to different clusters. One of 
the most popular clustering methods is K-Means clustering 
algorithm. It classifies object to a pre-defined number of 
clusters, which is given by the user (assume K clusters). The 
idea is to choose random cluster centres, one for each cluster. 
These centres are preferred to be as far as possible from each 
other. In this algorithm mostly Euclidean distance is used to 
find distance between data points and centroids. 
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EM algorithm: 
 

Given the microarray data and the current set of 
model parameters, the probability to associate a gene (or 
experiment) to every cluster is evaluated in the E step. Then, 
the M step finds the parameter setting that maximizes the 
likelihood of the complete data. The complete data refers to 
both the (observed) microarray data and the assignment of the 
genes (or experiments) to the clusters. The likelihood of the 
model increases as the two steps iterates, and convergence is 
guaranteed. The EM algorithm iterates between Expectation 
(E) steps and Maximization (M) steps. In the E step, hidden 
parameters are conditionally estimated from the data with the 
current estimated. In the M step, model parameters are 
estimated so as to maximize the likelihood of complete data 
given the estimated hidden parameters. When the EM 
algorithm converges, each data object is assigned to the 
component (cluster) with the maximum conditional 
probability 

 
Spatial EM algorithm: 

 
A gene-based clustering is used to group the gene 

patterns. Patterns are clustered based on genetic code 
transcriptions. The proposed methodology includes Spatial 
EM that can be used to calculate spatial mean and rank based 
scatter matrix to extract relevant patterns and further 
implement KNN (K- nearest neighbor classification) approach 
to diagnosis the diseases. An important finding is that the 
proposed semi supervised clustering algorithm is shown to be 
effective for recognizing biologically significant gene clusters 
with excellent predictive capability.  Spatial-EM modifies the 
component estimates on each M-step by spatial median and 
rank covariance matrix to gain robustness at the cost of 
increasing computational burden and losing theoretical 
tractability. Pseudocode of the algorithm is described as: 

 
Initialization t = 0, ߤ௝ ,∑ = ,ܫ ௝߬ = ଵ

௄
௝௝∀	ݎ݋݂	  

Do until ௝߬௧ܿ݁݃ܽݎ݁ݒ݋	ݎ݋݂	݈݈ܽ	݆ 
For j=1 to K 
E-Step: Calculate ௝ܶ௜

௧  
M-Step: Update ௝߬௧ାଵ 

Defineݓ௝௜௧ , Find	ߤ௝௧ାଵ, Find(∑ )௧ାଵ
௝

ିଵ 	ܽ݊݀	(∑ )௧ାଵ
௝

ିଵ/ଶ 
End  
t=t+1 
End 

 
In spatial algorithm can first calculate the maximum 

coverage of data and then initialize all variables and perform 
Expectation and Maximization steps as in EM algorithm. The 
EM iteration alternates between performing an expectation (E) 

step, which creates a function for the hope of the log-
likelihood evaluated using the current estimate for the 
parameters, and maximization (M) step, which figures 
parameters maximizing the expected log-likelihood found on 
the E step. These parameter-estimates are then used to decide 
the distribution of the latent variables in the next E step. The 
EM algorithm proceeds from the observation that the 
following is a way to explain these two sets of equations 
numerically. 
 
Gene Classification: 
 

Microarray classification approaches based on 
machine learning algorithms applied to DNA microarray data 
have been shown to have statistical and medical relevance for 
a variety of diseases.  One particular machine learning 
algorithm, Support Vector Machines (SVMs), has exposed 
promise in a variety of biological classification tasks, 
including gene expression microarrays. SVMs are powerful 
classification systems based on regularization techniques with 
excellent performance in many practical classification 
problems. The Support Vector Machine is rooted in statistical 
learning theory. It is different from the other classification 
method in the sense that SVM tries to maximize the separation 
between samples of two classes. Normally, only a subset of 
the data samples determines the decision hyper plane. Suppose 
the n data samples belong to two classes 
,(ଵݕ,ଵݔ)} … , ௡ݔ)  ௧ =1 or -1. A supportݕ	௜߳ℜ௠ܽ݊݀ݔ,{(௡ݕ,
vector machine tries to find a hyper plane ݔ்ݓ + ܾ = 0 which 
satisfies 

 

௜ݔ்ݓ࢏࢟ + ܾ ≥ 1− ௜ߝ , ݅ = 1, … ,݊, 
 
where ߝ௜ ≥ 0, ݅ = 1, … ,݊ are slack variables. As the distance 
from a model to the hyper plane is inversely proportional to 
்ݓ  a quadratic minimization problem is formulated as ݓ	
follows: 
 

Minimize ்ݓ ݓ	 + ܥ ∑ ௜௡ߝ
௜ୀଵ  

Subject to ࢟ݔ்ݓ࢏௜ + ܾ ≥ 1− ௜ߝ , ݅ = 1, … ,݊, 
 
where C is a parameter to balance the generalization facility 
represented in the first term ்ݓ  and separation ability ݓ	
indication in the second term∑ ௜௡ߝ

௜ୀଵ . A smaller value of the 
first term corresponds to better generalization, while the fewer 
positive values of the slack variables in the second term 
correspond to fewer misclassifications on the training samples. 
When the later is equal to zero, the training samples are 
linearly separable and there is no misclassification. 
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IV. RESULTS AND DISCUSSION 
 
Experimental results can evaluate the performance of 

the system using Accuracy rate. The accuracy rate is 
calculated using true positive, true negative, false positive and 
false negative metrics. So the accuracy rate is defined as: 
 

Accuracy =
TP + TN

TP + FN + TN + FP 

 

 
Fig 4: Performance evaluation 

 
Proposed framework provide improved accuracy rate 

in disease classification and analyzed severity level of 
diseases. 
 

V. CONCLUSION 
 

Microarray is an important tool for cancer 
classification at the molecular level. It monitors the expression 
levels of large number of genes in parallel. With large amount 
of expression data obtained through microarray experiments, 
suitable statistical and machine learning methods are needed 
to search for genes that are relevant to the identification of 
different types of disease tissues. In this paper, we have 
proposed a hybrid gene selection method, which combines a 
spatial EM methods and SVM classification to achieve high 
classification performance. Then provide severity level for 
each classified diseases. 
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