
IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 188 www.ijsart.com

Optimization of Job Shop Scheduling Problem using
Jaya Algorithm

Shah H. K.1, Raj Abhishek K.2, Mehta A. A.3, H. S. Keesari4
1, 2, 3, 4 Department of Mechanical Engineering

1, 2, 3, 4 Sinhgad Institute of Technology, Lonavala

Abstract- Optimization algorithms are search methods where
the goal is to find an optimal solution to a problem in order to
satisfy one or more objective functions which are possibly
subjected to a set of constraints. In this study, a recently
developed Jaya algorithm is tested for solving the constrained
and unconstrained optimization problems which is based on
the concept that the solution obtained for a given problem
should move towards the best solution and should avoid the
worst solution. By applying the same concept, we are reducing
the ideal time of different Job Shop Scheduling Problem
(JSSP) benchmark functions by rescheduling the jobs through
Position Based Crossover method and minimizing the overall
makespan thus optimizing the entire process by Jaya
Algorithm.

The JSSP can be stated as follows that n jobs to be

processed through m machines. Each job should be processed
through the machines in a particular order without
precedence constraints among different job operations

Keywords- Jaya Algorithm, Job Shop Scheduling Problem,
Makespan, Position Based Crossover Mechanism.

I. INTRODUCTION

In the phase of global competition, the requirement
for dimension accuracy, mechanical properties and surface
properties have become a major challenge on manufacturing
industries since almost every service that we use in our day-
to-day life is somehow linked to the optimization of
resources.

Scheduling (production process) is an important tool

for manufacturing and engineering. This importance stems
from the desire to lower production costs, increase profits,
save time, increase production rate and thus optimizing
resources. Also, Scheduling problems exist in many real-life
situations, such as transportation, management, engineering,
biomedical, construction, production processes. Our way of
life, made possible by modern computer technology and
networking, demands efficient scheduling. And so Scheduling
for job shops is an important topic in production management.
It is concerned with determining the release order and times
of a set of jobs on the relevant machines subject to the

processing constraints in an effort to improve the production
efficiency and reduce the processing duration so as to gain as
high profits as possible. The processing time of an operation
cannot be known precisely and the due-date may be flexible
in real-world, processing time and due-date with fuzzy value
is quite usual nowadays in practice. The fuzzy job-shop
scheduling problem (fJSSP) extends the JSSP by considering
the processing time or the due-date to be fuzzy value. The
fuzzy flexible job-shop scheduling problem (fFJSSP) is a
combination of the FJSSP and fJSSP, which is more close to
the production reality [1]. By introducing more real-world
constraints, the problems can be solved by optimizing the real
time data in hand.

JSSP is one of many types of scheduling problems

that researchers from many fields are currently attempting to
solve optimally using various meta-heuristic algorithms. The
solution to these scheduling problems is simply the
determination of the optimal assignment of a finite number of
resources to a finite number of operations, while adhering to
many pre-defined constraints, usually precedent constraints.
Precedent constraints, or technological constraints, dictate the
order of operations for each job, or the order of machines a
job must visit. A solution to a JSSP is a schedule specifying
when each machine is to start processing certain operations
that does not violate any precedent constraints. The Job Shop
Problem belongs to the class of NP-Hard problems, and is
commonly thought of as one of the harder problems in that
class. NP-Hard problems have an exponentially growing
search space as the problem increases in dimension.
Therefore, methods and algorithms must be developed to
provide good search directions within this space for our
modern computers to perform their calculations. Where exact
methods of optimization search out the best solution
exhaustively by using mathematical formulations, methods of
computational intelligence which rely on certain heuristic
principles and ideas to explore and then converge to the best
found solution. Optimization algorithms are search methods
where the goal is to find an optimal solution to a problem, in
order to satisfy one or more objective functions, possibly
subject to a set of constraints. Thus a simple yet powerful
optimization algorithm is used in this paper for solving the
discrete optimization problems. This algorithm is based on the
concept that the solution obtained for a given problem should

IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 189 www.ijsart.com

move towards the best solution and should avoid the worst
solution. The performance of this algorithm is investigated by
implementing it on four unconstrained benchmark functions,
having different characteristics from the literature. In addition
to solving the unconstrained benchmark problems, this
algorithm also investigates real time problems on JSSP. The
ultimate goal is to minimize the makespan of the problem, or
the minimum time required for all jobs to finish processing,
thus optimizing the entire job shop scheduling problem
through Jaya Algorithm.

II. LITERATURE REVIEW

The Job Shop Scheduling Problem (JSSP) is one of
the most popular scheduling models existing in practice which
is among the hardest combinatorial optimization problems.

Keesari and Rao concluded that the TLBO algorithm
can be effectively used for job shop scheduling problems.
From the experimental results it can be said that when the size
of the JSSP is low then TLBO gives the better solutions in
terms of best make-span, relative percent error and standard
deviation [2].

Rao and Waghmare provided the verification of
performance of the TLBO algorithm with well-known other
optimization methods, by experimenting with different multi-
objective unconstrained and constrained benchmark functions
[3].

Gao exhibited the remanufacturing scheduling
problem as two stage FJSP with new job inserting. A two-
stage artificial bee colony algorithm is proposed to solve
scheduling and rescheduling with new job inserting. In this
paper, three re-scheduling strategies are proposed for
rescheduling and compared with standards [4].

The standard job shop scheduling problem has been
widely adopted as a model in the research of optimization
algorithms. There are several objective functions to be
considered in theoretical investigations, of which the most
frequently studied is the make span criterion i.e. maximum
completion time of all jobs. Ziaee examined the FJSSP with
preventive maintenance constraints. The objective of this
paper is to minimize the make-span, the total workload of
machines and the workload of most loaded machine. The main
purpose is to produce reasonable schedules very quickly. The
proposed approach uses an accurate, relatively comprehensive
and flexible criterion for scheduling job operations
constructing a feasible high-quality solution [5].

Pierre examined an unexplored approach to the design
of heuristics: change of neighbourhood in the search. He

called this method variable neighbourhood search method
(VNS). Contrary to other metaheuristics based on local search
methods, VNS does not follow a trajectory but explores
increasingly distant neighbourhoods of the current incumbent
solutions and jumps from this solution to a new one if and
only if an improvement has been made. This is useful in
scheduling and finding the optimum solution [6].

Lixin studied two-machine flowshop scheduling with
batching and release time, whose objective is to minimize the
makespan. He derived a lower bound and developed a
dynamic programming-based heuristic algorithm to solve the
scheduling problem. The numerical results show that some of
the heuristic algorithms can indeed find effective solutions for
the scheduling problem [7].

Rao developed the Jaya Algorithm. The algorithm
always tries to get closer to success (i.e. reaching the best
solution) and tries to avoid failure (i.e. moving away from the
worst solution). The algorithm strives to become victorious by
reaching the best solution and hence it is named as Jaya (a
Sanskrit word meaning victory). He accentuated that the
proposed Jaya algorithm is not claimed as the ‘best’ algorithm
among all the optimization algorithms available in the
literature. In fact, there may not be any such ‘best’ algorithm
existing for all types and varieties of problems. What can be
said with more confidence at present about the Jaya algorithm
is that it is simple to apply without any algorithm-specific
parameters and provides the optimum results in comparatively
less number of function evaluations [8].

It has been observed from the literature review that

different researchers proposed different optimization methods
to solve the job shop scheduling problems. Many researchers
have focused on minimizing the makespan. In this study, an
attempt is made to apply a recently developed advanced
optimization algorithm known as Jaya algorithm to solve the
job shop scheduling problems.

III. MATHEMATICAL MODEL OF JOB SHOP
SCHEDULING PROBLEM (JSSP)

The optimization process contains the combination of

four main points, namely, JSSP, Jaya Algorithm, Position
Based Crossover (PBC/PBX) mechanism and Minimizing
Makespan.

 The jobs are scheduled through PBX mechanism and
the best/minimum makespan is calculated for the best
combination. Further it is combined with Jaya Algorithm and
the overall process is optimized for makespan.

IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 190 www.ijsart.com

A solution to a Job Shop scheduling Problem is a
schedule specifying when each machine is to start processing
certain operations that does not violate any preceding
constraints. The ultimate goal is to minimize the makespan of
the problem, or the minimum time required for all jobs to
finish processing.

In a JSSP, a job can be processed by any machine of

an associated pre-specified subset of the machine set. Thus,
these problems generalize problems in which a job can be
processed by each machine of the machine set. The objective
is to find a schedule that minimizes the makespan.

A JSSP can be described as follows. We have a set of

n jobs need to be operated on a set of m machines. Each job
has its own processing route, i.e. jobs visit machines in
different sequences. Each job may need to be performed only
on a fraction of m machines, not all of them.

The following assumptions are generally made in the Job

Shop Scheduling problem:
 Each machine can perform only one operation at a time

on any job.
 An operation of a job can be performed by only one

machine at a time.
 Once an operation has begun on a machine, it must not be

interrupted.
 An operation of a job cannot be performed until its

preceding operations are completed.
 There are no alternate routings, i.e., an operation of a job

can be performed by only one type of machine.
 Operation processing time and the index of operable

machines are known in advance.
 The jobs are independent; that is, there are no precedence

constraints among the jobs and they can be operated in
any sequence.

 Setup times are sequence dependent.
 All the jobs are available for their process at various

times.

The classical JSS problem can be described as follows:
There are a set of m machines and a set of n jobs. Each job
consists of a sequence of operations, each of which needs to
be processed during an uninterrupted time period of a given
length on a given machine. Each machine can process at most
one operation at a time. We assume that any successive
operations of the same job are processed on different
machines. A schedule is an assignment of the operations to
time intervals on the machines.
The problem is to find a schedule which optimizes a given
objective. Assume that three finite sets J, M, O are given

where J is a set of jobs 1… n, M is a set of machines 1 … m,
and O is a set of operations 1, …, N.

Consider the following denotations:

Ji = the job to which operation i belongs,
Mi = the machine on which operation i is to be
processed,
ti = the start time for operation i,
pi = the processing time for operation i,
Cmax = the makespan.

On O, a binary relation  is defined that represents
precedence constraints between operations of the same job.

If ij, then Ji=Jj and there is no k{i,j} satisfying
ik or kj. (Operation i is the predecessor of operation j).
Thus, if ij, then Mi  Mj by the JSSP specifications.

The problem of optimal job scheduling is to find a
starting ti time for each operation iO such that:

Max (ti+pi) as iO is minimized, (1)
Subjected to:
 i O : ti  0 (2)
 i, j O, ij : tj  ti+pi (3)
i,j O, i  j, Mi = Mj : (tj  ti+pi)(tj  ti+pj) (4)

The conditions (3) express precedence constraints
which represent technological link-up of operations within the
same task. The conditions (4) express machine capacity
constraints, i.e. each machine can process at most one
operation at a time.

The described equations cannot be directly used for
determining a schedule. We need to eliminate symbols of
binary relation  and disjunction  and try to get a
formulation of integer programming.

The binary relation can be eliminated easily so that O
will be decomposed into subsets of operations that correspond
to tasks. Then we will assign to operations in each task
numbers creating a sequence of consecutive integers by the
operation order.

Denote nj = the number of operations in job j, and Nj

= the total number of operations of the first j jobs.
Evidently:
 N0 = 0, N୨ = 	∑ n୩

୨
୩ୀଵ 	, ܰ = 	∑ n୩୬

୩ୀଵ (5)
Using the denotation for total number of operations

of the first j-1 jobs, we assign to nj operations of the first j-1

IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 191 www.ijsart.com

jobs, we assign to nj operations of task j numbers Nj-1+1, . . . ,
Nj-1 + nj where Nj-1 + nj = Nj.

Now we can express equation (3) as follows:
 ( jJ) (Nj-1+1 ≤ i ≤ Nj-1) : ti+1  ti + pi (6)

The makespan is then determined as the maximum of the
completion times of the last operations in jobs. Hence, we get:
 jJ : Cmax  tn + pNj (7)

Let us define capacity constraints using binary variables xi,j
{0,1} as follows:
  i, j O, i  j, Mi = Mj :
xij =1,tjti+pi,operation i precedes operation j. (8)
 = 0, tj  tj+pj , operation j precedes operation i

If T is an upper bound of the makespan, then, using
x, we can replace equation (4) by pairs of inequalities as
follows:
 i, j O, i  j, Mi = Mj : tj  ti+pi xij –T(1-xij) or ti  tj+pi (1-
xij)–Txij (9)

Hence, the job shop scheduling problem with
makespan objective can be formulated as follows:
Minimize Cmax, Subjected to,
 i O : ti  0

( jJ) (Nj-1+1 ≤ i ≤ Nj-1) : ti+1  ti + pi
jJ : Cmax  tn + pNj
 i, j O, i  j, Mi = Mj : xi,j {0,1}
 : tj  ti+pi xij –T(1-xij) or ti 
 tj+pi (1-xij) – Txij

IV. JAYA ALGORITHM

The algorithm always tries to get closer to success
(i.e. reaching the best solution) and tries to avoid failure (i.e.
moving away from the worst solution). The algorithm strives
to become victorious by reaching the best solution and hence
it is named as Jaya (a Sanskrit word meaning victory).

Let f(x) is the objective function to be minimized or

maximized. At any iteration i, assume that there are ‘m’
number of design variables (i.e. j=1, 2,…, m) & ‘n’ number of
candidate solutions (i.e. population size, k=1, 2,…,n). Let the
best candidate obtains the best value of f(x) (i.e. f(x) best) in
the entire candidate solutions and the worst candidate obtains
the worst value of f(x) (i.e. f(x) worst) in the entire candidate
solutions. If Xj,k,i is the value of the jth variable for the kth
candidate during the ith iteration, then this value is modified
as per the following Eq. (1). X'j,k,i= Xj,k,i+ r1,j,i (Xj,best,i-
│Xj,k,i│) - r2,j,i (Xj,worst,i- │Xj,k,i│)………(1) where,

Xj,best,i is the value of the variable j for the best candidate
and Xj,worst,i is the value of the variable j for the worst
candidate. X'j,k,i is the updated value of Xj,k,i and r1,j,i and
r2,j,i are the two random numbers for the jth variable during
the ith iteration in the range [0, 1]. The term “r1,j,i (
(Xj,best,i- │Xj,k,i│)” indicates the tendency of the solution to
move closer to the best solution and the term “-r2,j,i
(Xj,worst,i- │Xj,k,i│)” indicates the tendency of the solution
to avoid the worst solution. X'j,k,I is accepted if it gives better
function value. All the accepted function values at the end of
iteration are maintained and these values become the input to
the next iteration [8].

Fig. 4.1 Flowchart of the Jaya Algorithm [8].

Pseudo code for Jaya Algorithm

Objective Function= fx(i,j)=x(i,1)2+a(i,2)2+….+x(i,j)2 (1)

Design Variables= x1(i,j,Ni) =
x(i,j)+rand*(bestsolution(Ni,j)-abs(x(i,j)))-rand*
(worstsolution(Ni,j)-abs(x(i,j))) (2)

New Objective Function= fx1(i,j) =
x1(i,1)2+x1(i,2)2 +……+x1(i,j)2 (3)

Begin
Initialize N (Population Size), D (Design Variables), Ng
(Generations) and Ni (Iterations)
for all design variables
Randomly the values are taken within the range
Evaluate the solutions/objective_functions for each member
of the population size
for i=1:N (Population size)
Update the value of solutions/objective_functions according
to (1)
end for
while (stopping condition is mentioned)
Identify the best solution and worst solution as bestsolution

IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 192 www.ijsart.com

and worstsolution
Evaluate the New Design Variables
for i=1:N (Population size)
for j=1:D (Design Variables)
Update the design variables according to (2)
while (condition for keeping the design variables in the range)
Again update the design variables according to (2) if not
within the range
end while
end for
end for
Evaluate the new solutions/objective functions for each
member of the population size
for i=1:N (Population size)
Update the new values for objective function according to (3)
end for
for i=1:N (Population size)
if new solution value is less than the old solution value
Replace the old solution value with the new solution value
end if
end for
Find the position and value of the minimum objective function
from the whole process
if Ng==Ni
Process needs to stop (condition mentioned in while)
else
Continue with the process/cycle (condition mentioned in
while) end if
Display the value of design variables for which we get the
optimum solution
end while
end for
end

V. MAPPING OF JAYA ALGORITHM ON JSSP

In our JSSP, the goal is to find a global optimization
of the makespan, i.e. we try to find the job operation
scheduling list that minimizes the makespan value. For this,
the steps of operation can be described as follows:

The First Step:

The initial parameters i.e. algorithm parameters such
as the number of students and number of generations are set.
Next, the job’s processing time on each machine and the job’s
machine sequence will be given at this step.

Table 1. An example of job processing time on each machine
for 10 jobs and 5 machines.

In our solution representation, a solution in JSSP is an
operation scheduling list, which is represented as a student in
our Jaya algorithm. Each dimension in a student represents
one operation of a job. Each job appears exactly m times in an
operation scheduling list. For the n-job and m-machine
problem, each food source contains nxm dimensions
corresponding to nxm operations. Here we have taken one of
the instances (problems) from a set of 64 JSSP test instances
i.e. instance la01 which is given below in the Table 1.

This is the representation of sequence in which each job

will be visiting each machine at a time. Since each job has five
operations, it occurs ten times in the operation scheduling list.
The interpretation of the example above is as follows:

Table 2. A sequence of job processing time on each machine

for 10-job, 5-machine.

The Second Step:

Now calculate the mean of the makespan and select
any one solution which is very nearer to the mean (MD). Now
this solution will act as the mean (M) for that iteration.

M = the solution of the makespan which is very nearer to

IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 193 www.ijsart.com

the mean (MD).
Xt = Xf(x) = min.

The best solution will try to shift the mean from M towards Xt
which will act as a new mean for the iteration. So,

Mnew = Xt.
The difference between two means is expressed as

 DD = r (Mnew –TF*MD).
The difference (DD) is updated by old mean (MD) and new
mean (Mnew) solutions using, Variable Neighbourhood Search
Method.
Then the current solutions are updated by using the relation
shown below

Xnew = Xold + DD

The obtained difference is used to the current
solution to update its values using Variable Neighbourhood
Search Method. By considering difference (DD) as the new
mean and each solution (Xold) in the population as old mean
one at a time, JAYA updates the old solutions. Then after
calculating the makespan by applying the greedy selection
method improves the solutions.

The Third Step:

 The new solutions (Xnew) are improved by Variable
Neighbouring Search method (VNS). A local search based on
the Variable Neighbouring Search method (VNS) is performed
on the new solutions to improve the solution quality. The
pseudo code of VNS method is shown below.

Although it seems that VNS would actually find the
best solution by itself, it sometimes takes a long time to reach
useful solutions whilst solving large scale Job Shop
Scheduling.

Variable Neighbouring Search method (VNS):
 VNS Procedure:

Get Initial solution, x'=xb
Set Step =0 and p=1
n= number of jobs
m = number of machines
i = random integer number [1, n*m]
j = random integer number [1, n*m], i ≠ j
x' = exchanging process (x', i, j)
i = random integer number [1, n*m]
j = random integer number [1, n*m], i ≠ j
x' = inserting process (x', i, j)
i = random integer number [1, n*m]
j = random integer number [1, n*m], i ≠ j
x' = exchanging process (x', i, j)

While (step ≤ (n*m)*(n*m-1))
 i = random integer number [1, n*m]
 j = random integer number [1, n*m], i ≠ j
If (p=1) then x'' = exchanging process (x', i, j)
Else if (p=0) then x'' = inserting process (x', i, j)
If (fitness(x'') ≥ fitness(x')) then x' = x''
Else p = |p-1|
 Step=step+1
End while
If (fitness(x') ≥ fitness (xb)) then xb= x'
End procedure

 i and j are the random integer numbers between 1 and
n*m, Exchanging Process (x, a, b) means exchanging the job
operations in solution x between ith and jth dimensions, i ≠ j.
Inserting Process (x, a, b) means removing the job operation in
solution x from the ith dimension and inserting it in the jth
dimension. The example of the exchanging process and the
inserting process are shown in Figs. 5.2 and 5.3, respectively.

Figure 5.2: Exchanging process in VNS method for new

solution [2].

Figure 5.3: Inserting process in VNS method for new solution
[2].

The Fourth Step :

If the termination criterion is satisfied then the algorithm
stops otherwise goes to the next run or iteration.

The following three heuristic rules are implemented on them
for the selection:

IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 194 www.ijsart.com

1) If one solution is feasible and the other is infeasible, then
the feasible solution is preferred.

2) If both the solutions are feasible, then the solution having
the better objective function value is preferred.

3) If both the solutions are infeasible, then the solution
having the least constraint violation is preferred.

These rules are implemented at the end of Steps 2 and 3 [2].

 In short, this is the mapping of Jaya algorithm on
JSSP problems.

VI. RESULTS AND CONFIRMATION OF THE
EXPERIMENT

Our goal is to solve the job shop scheduling problem

using advanced optimization techniques and to evaluate the
performance of the Jaya algorithm.

Jaya algorithm is based on the concept that the

solution obtained for a given problem should move towards
the best solution and should avoid the worst solution. The
performance of this algorithm is investigated by implementing
it on unconstrained benchmark functions, having different
characteristics from the literature.

Also, while solving the JSSP we are interested only
in the makespan of a particular solution to the JSSP, which is
just a number. It is possible to judge the complexity of a
problem by looking at the complexity of its solution.
However, it is interesting and helpful in understanding the
problem, when we look at the schedule in the form of a Gantt
chart. In this section Gantt charts of some of the solutions
which are given by JAYA algorithm are produced to give the
reader some visual feedback.

A 10x5 problem was solved until optimality is
reached. In this we can notice that most of the time all
machines are processing an operation, this is a result of how
the problem happens to be defined, the precedent constraints
and processing times happen to allow for very efficient use of
time.

In Table 3 actual problem is shown. Also in Table 4
the optimal solution for the problem is shown.

This shows that machine 5 is working more time than
the other machines. That means to finish all jobs we must wait
until the 5th machine is finished working. So this becomes the
makespan for the problem.

‘‘BKS’’ means the best known solution for the

instance and ‘‘Best’’ means the best solution found by each
algorithm, ‘‘Average’’ and ‘‘S.D.’’ means the average and
standard deviation, respectively, of the results over 20 runs,
and ‘‘RPE’’ means the relative percent error with respect to
the best known solution. RPE is calculated from the equation
below
 .x100 [2](BKS/(Best−BKS))= ܧܴܲ

Figure 6.1: Gantt chart of the LA01 (OR-Library) Problem[2]

Table 3: Job Shop Problem Machine Sequence (Time)

Job 1: 2 (21) 1 (53) 5 (95) 4 (55) 3 (34)
Job 2: 1 (21) 4 (52) 5 (16) 3 (26) 2 (71)
Job 3: 4 (39) 5 (98) 2 (42) 3 (31) 1 (12)
Job 4: 2 (77) 1 (55) 4 (79) 2 (66) 3 (77)
Job 5: 1 (83) 4 (34) 3 (64) 2 (19) 5 (37)
Job 6: 2 (54) 3 (43) 5 (79) 1 (92) 3 (62)
Job 7: 4 (69) 5 (77) 2 (87) 3 (87) 1 (93)
Job 8: 3 (38) 1 (60) 2 (41) 4 (24) 5 (83)
Job 9: 4 (17) 2 (49) 5 (25) 1 (44) 3 (98)
Job 10: 5 (77) 4 (79) 3 (43) 2 (75) 1 (96)

Table 4: Optimal solution for the problem

Machine 1: 2 1 9 5 10 6 4 3 8 7
Machine 2: 1 6 3 4 2 7 9 5 10 8
Machine 3: 10 2 5 4 1 8 6 7 9 3
Machine 4: 7 3 1 2 5 8 9 6 4 10
Machine 5: 9 6 4 7 3 2 1 5 8 10

Similarly, we solved 5 other problems. The results for

all the problems are shown in the table below:

IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 195 www.ijsart.com

Table 5: Result table for all the problems.

VII. CONCLUSION

 This paper has investigated Jaya Algorithm.
Experiments on benchmark functions were carried out.
Further, comparison of the results of those benchmark
functions with standard optimized output concluded Jaya
Algorithm to be a simpler and yet an efficient algorithm. The
main goal is to optimize JSSP using Jaya Algorithm. The
optimization was done by minimizing the makespan with the
help of Position Based Crossover mechanism and Variable
Neighbourhood Search Method. Keeping the results in mind,
so far, this paper proved that the Jaya Algorithm fetched better
results than the existing algorithms in optimizing a Job Shop
Scheduling Problem.

REFERENCES

[1] Xu Y., Wang L., Wang S., Liu M., “An effective

teaching-learning-based optimization algorithm for the
flexible job-shop scheduling problem with fuzzy
processing time”, Neurocomputing , 2013, Vol. 148, pp.
260-268.

[2] Keesari H. S., Rao R. V.; “Optimization of job shop
scheduling problems using teaching-learning-based
optimization algorithm”; Operational Research Society of
India, 2013, Vol. 51, pp. 545-561.

[3] Rao R. V., Waghmare G.G.; “A comparative study of a

teaching–learning-based optimization algorithm on multi-
objective unconstrained and constrained functions”;
Journal of King Saud University – Computer and
Information Sciences , 2014, Vol. 26, pp. 332–346.

[4] Gao K. Z., Suganthan P. N., Chua T. Jin, Chang C. Soon,

Cai T. Xiang, Pan Q. Ke,; “A two-stage artificial bee
colony algorithm scheduling flexible job-shop scheduling
problem with new job-shop insertion”, Expert Systems
with Applications, 2015, Vol. 42, pp. 7652-7663.

[5] Ziaee M., “An efficient heuristic algorithm for flexible

job shop scheduling with maintenance constraints”;

Applied Mathematics and Sciences: An International
Journal (MathSJ), 2014, Vol. 1, No. 1.

[6] Pierre H., Nenad M.; “Variable neighbourhood search:

Principles and applications”; European Journal of
Operational Research, 2001, Vol. 130, pp. 449-467.

[7] Lixin T, Peng L, “Minimizing makespan in a two-

machine flowshop scheduling with batching and release
time”; Mathematical and Computer Modelling, 2009, Vol.
49, pp. 1071-1077.

[8] Rao R. V., “Jaya: A simple and new optimization

algorithm for solving constrained and unconstrained
optimization problems”; International Journal of
Industrial Engineering Computations, 2015, Vol. 7, pp.
19-34.

