
IJSART – Volume 2 Issue 3–MARCH2016 ISSN [ONLINE]: 2395-1052

Page | 337 www.ijsart.com

Dynamic Visualisation Using Parallel Multicore
System and HPC

Supriya Phatak1, S. V. Patil2, Rupali Jadhav3, D. R. Anekar4

1, 2, 3Department of Computer Science & Enginnering
4 Department of Information Technology

1, 2, 3ADCET Sangli, Shivaji University
4 SAOE Pune, Pune University

Abstract- As various obstacles showed up with implementing
an application resource workflow, in the future the creation of
Web Services for HPC services will be a solution for
dedicated issues. For implementation testing the new
supercomputer resources HLRN-II (North-German
Supercomputing Alliance) have been used.

Keywords— Multi Core parallel systems, Line of sight, HPC.

I. INTRODUCTION

Numerous applications and algorithms for handling
dynamical visualisation and processing of scientific
information could evolve more flexibility and facilities if they
could use existing computing power more directly, namely
MPP (Massively Parallel Processing) and SMP (Symmetric
Multi-Processing) resources. Large benefits can result from
using many cores of large computing resources in parallel,
within a shorter time interval, for quasi interactive use. The
idea of dynamical distributed resource usage for geoscientific
information was introduced with the concept of Active Source
[6]. For integration of HPC, Grid, and cluster resources are
given as:
 Framework for the use of high end computing resources

for dynamical visualization and information systems
 Inerrability of concepts (e.g. batch and scheduling)
 Frameworks for the application of algorithms needed
 Interfaces for flexible and secure data and application

transfer, interchange, and distribution
 Portability of implementations, extendibility of existing

methods, reusability of existing solutions.

Due to the limitations of delivering computing power
from High Performance Computing, Grid Computing, and
cluster computing resources interactively to a workstation, a
framework is needed to integrate these resources. In absence
of support for coupling these resources, in the past some
features had to be last on the list to be addressed. HPC allows
the scientific community to use a wide variety of
computational resources to extend and accelerate the
computation of their models. However, the selection of HPC
architectures and programming interfaces for the models to be

developed requires an important effort. Currently, HPC is
characterized by the heterogeneity of their resources. Most of
the modern supercomputers consist of clusters of multi-core
nodes which include accelerator devices such as GPUs [4].
Current standalone computers present tremendous power,
because of technological and architectural advances [5] and
they are considered as desktop supercomputers if their
heterogeneous resources are appropriately exploited. These
architectures are based on multi-core processors and include
additional resources to take advantage of different kinds of
parallelism for each application (instructions level parallelism,
data parallelism, task parallelism and so on).

II. HPC HARDWARE

Today most high-performance computer systems are
built using the same components that power high-end
commodity servers and workstations: i.e. multicore x86 CPUs
from Intel & AMD, high-speed DD3 DRAM memory, high-
end Graphics Processing Units (GPUs) from NVIDIA &
AMD. There are several fundamental differences between
single node high-performance servers (which can be
considered high performance computing systems on their
own) and clusters of these servers: the ability of processing
elements to directly access (“load/store”) shared memory
banks on single-node systems and the presence of a dedicated
high-speed network to increase the scale of the system on
clusters. A cluster is a collection of (typically) high-end
commodity servers, with a homogeneous configuration (same
processor type & speed, same memory size), connected via a
highspeed dedicated network. The reason why clusters are the
HPC system of choice is that single-node systems can only be
(economically) built to accommodate certain modest levels of
processing elements and memory. Any needed increase in
these elements has to be achieved by clustering multiple
single-node systems together. Several vendors (Cray, IBM)
build highly specialized clusters which use non-commodity
parts particularly for their net works. These machines are
called proprietary supercomputers or integrated massively
parallel processing (MPP) systems. Many systems in the Top
500 [5] list of supercomputers in the world belong to this MPP
category.

IJSART – Volume 2 Issue 3–MARCH2016 ISSN [ONLINE]: 2395-1052

Page | 338 www.ijsart.com

III. HPC SOFTWARE & MULTICORE
MICROPROCESSOR ARCHITECTURE

Modern HPC software falls into two categories: a

number of commercial packages that are used in specialized
technical areas by industry (i.e. oil & gas, automobile design,
drug design) and an assortment of custom applications written
by a multitude of government research laboratories &
academic institutions that range all the way from bullet-proof,
robust codes to one-off research prototypes.

Microprocessor designers have long been considering

many design choices to efficiently utilize the ever increasing
effective silicon area with the increase of transistor density.
The noticeable trend in this stream since mid-2000 is the
multicore design. Instead of employing a complicated
processor pipeline on a chip with an emphasis on improving
single thread’s performance, incorporating multiple processor
cores on a single chip has become a main stream
microprocessor design trend. As a Chip Multi-Processor
(CMP), it can execute multiple software threads on a single
chip at the same time. Thus a multicore processor provides a
larger capacity of computations performed per chip for a given
time interval (or throughput) [8].

Fig1 Architecture of Advanced Multicore processor

In addition to the CMP based multi-core design,

some designs go one step further to incorporate Simultaneous
MultiThreading (SMT) or similar technologies such as Intel
Hyperthreading on a processor core. Examples are Intel
Nehalem and UltraSPARC T2/T3 microprocessor from
Oracle/Sun. Fig.1 shows the architecture of an advanced
multicore processor. On each processor chip, there are
Nprocessor cores, with each core having its own level-1
onchip cache. The N-cores share a larger capacity level-2 (and
possibly level-3) cache(s) on (or off) the processor chip. Each
core also has M hardware threads performing SMT or similar
features. Thus it supports two levels of parallelism.

IV. STATUS OF THE IMPLEMENTATION

The status of implementation is given as below

A. HPC Resources and Configuration

For the work described here, the various resources of

HLRN have been used. HLRN is the North-German
Supercomputing Alliance. HLRN provides high-end High
Performance Computing (HPC) resources jointly used and co-
funded by the northern German states of Niedersachsen,
Berlin, Bremen, Hamburg, Mecklenburg-Vorpommern,
Schleswig-Holstein, and the Federal Government of Germany
/ German Research Society (DFG). Those resources include
HLRN-II [3], a system comprised of two identical computing
and storage complexes, one located at the Leibniz
University¨at Hannover, Regionales Rechenzentrum f¨ur
Niedersachsen (RRZN) and the other at the Konrad-Zuse-
Zentrum f¨ur Informationstechnik Berlin (ZIB). By connecting
the two systems via the HLRN-Link dedicated fibre optic
network (Cisco Catalyst switches), HLRN can operate and
administer them as one system. Each complex consists of
MPP and SMP cluster components (SGI Altix ICE andXE) [4]
installed in two phases. The first phase has been installed by
Silicon Graphics Inc. in this year 2008.

For security reasons a trusted computing interface

using sandboxing has been configured as various security
policies for integrating data and applications have been
introduced and successfully tested. This configuration allows
very flexible transfer of data, secured execution of foreign
Active Sources on demand, accounting as well as batch and
interactive use of resources.

B. Batch System and Scheduling

The batch system, scheduling and resource
management implemented on HLRN-II is based on Moab and
Torque. With this system the PBS (Portable Batch System)
resource specification language [5,10] is used. Interactive use
and calculation is widely depending on features of the batch
system used. Currently the end user application will have to do
the job synchronisation. With a conventional system
configuration the management of multi user operation is
difficult. Both synchronising and multi user operation tend to
work against interactive use.

C. Accessing Computing Resources

The Actmap Computing Resources Interface (CRI) is
an actmap library containing procedures for handling
computing resources. Examples for using High Performance

IJSART – Volume 2 Issue 3–MARCH2016 ISSN [ONLINE]: 2395-1052

Page | 339 www.ijsart.com

Computing and Grid Computing resources include batch
system interfaces and job handling. This library (actlcri) can
hold functions and procedures and even platform specific parts
in a portable way. It can be used by calling the source code
library as well as the byte code library generated with a
compiler like TclPro. From an application, calling Actmap
CRI can be done as follows. For various applications, byte
code (TBC) [6] has been considered for any part of
applications and data.

D. Distributing Data

Within event triggered jobs, MPI and batch means
can be used for distributing and collecting data and job output.
For distributing files automatically within the system e.g. dsh,
pdsh, C3 tools, Secure Shell (SSH and SCP) are used.
Interactive communication is supported by the appropriate
Secure Shell key configuration. It must be part of the system
configuration to correctly employ authorisation keys and
crontab or at features.

E. Authorization and System Security

Authorisation for accessing data and information
associated with the calculation currently affords to have one
instance of the application present on one of the servers of the
HPC resource, e.g. login or batch. A dedicated network using
secure keys can be configured for the purpose of interactive
application access in order to simplify communication and
data transfer between the nodes. As for system security
reasons large installations will tend to be restricted to
dedicated users with this scenario. For execution of dynamic
sources the trusted computing interface has been configured as
policy trusted.

F. Accounting Jobs and Processes

The implemented framework is incorporated in an
integrated solution for monitoring, accounting, billing
supporting the geoinformation market. An outlook has been
given for Geographic Grid Computing at the International
Conference on Grid Services Engineering and Management
(GSEM). Especially for the extended use of GIS and
computing resources, the Grid-GIS framework, the “Grid-GIS
house” has been created [9] and is used within the D-Grid
[8,10] and with Condor. The Active Source components used
here, are part of this framework, on top of the Grid services,
Grid middleware, and the HPC and Grid resources.

V. PARALLELISM ANALYSIS METHOD

The parallelism analysis method is given as below:

A. Analysis Method for Data Dependence Violations

Definition 1. Produce-distance: the instruction numbers from
the beginning of the thread to the last write operation for a
specific memory address.

Definition 2. Consume-distance: the instruction numbers from
the beginning of the thread to the first read operation for a
specific memory address. The inter-thread data dependence
can be abstracted as a producer/consumer model. Write
operation is data producing while read operation is data
consuming. To describe the data dependence violation, we
introduce two terms here: “produce-distance” and “consume-
distance”. The produce-distance means the instruction
numbers from the beginning of the thread to the last write
instruction for a specific memory address, and consume-
distance means the instruction numbers from the beginning of
the thread to the first read instruction for a specific memory
address. Either of them is calculated for specific data and both
of them must be calculated at running time.

For thread i and its successor thread i+1, starting at
almost the same time, if the latter’s consume-distance is less
than the former’s produce-distance, there will be a dependence
violation under the assumption of that all processor execute
instructions at a same speed.

B. Benchmarks Choosing

In order to fully understand the TLP applicability, we
analyzed three representative benchmark suites to give us a
basically overall conclusion in the traditional application area.
They are SPEC CPU2000 integer benchmark suite for desktop
field, Mediabench benchmark suite for multimedia field, and
SPLASH2 benchmark suite for HPC field. The reasons are as
follows:

i. Desktop, media and HPC fields are the most
important traditional application areas.

ii. These three benchmark suites all include the most
important applications in their main field each.

iii. Their serial codes are compatible that is what the
TLP technology needs.

C. Profiling Tool

The profiling tool we used in our investigation named
ProLoop [5]. It’s extended from sim-fast, the fasted simulator
of SimpleScalar tool set which execute one instruction per

IJSART – Volume 2 Issue 3–MARCH2016 ISSN [ONLINE]: 2395-1052

Page | 340 www.ijsart.com

cycle. All experiments are done in Linux on the x86 platform.
The destination ISA in the tool is PISA and the cross compiler
from the gcc-2.7.2.3 with reconstructed backend is provided
by Simple Scalar tool set.

VI. CHALLENGES IDENTIFIED

The most important challenges identified with these

implementations on HPC resources have been grouped within
this context in order to be briefly discussed.
 HPC resources and configuration
 Batch system and scheduling
 Accessing computing resources / Actmap Computing
 Resources Interface / Message Passing
 Distributing data
 Authorization and system security
 Accounting jobs and processes.

The following sections briefly describe the basic

approaches for the implemented solution before showing an
overall case study of an information system using distributed
resources.

VII. LAUNCHING PARALLEL APPLICATIONS

The concepts presented in this paper generally apply
to parallel applications in many kinds of distributed computing
environments. However, for simplicity, this paper will present
concepts in the context of a single use-case: launching a
multiprocess parallel MPI job in a typical HPC cluster
consisting of commodity multi-core NUMA machines.
Launching multi-process, (possibly multi-threaded) parallel
applications requires the support of a parallel run-time
environment. Parallel run-time environments can launch and
monitor groups of processes across nodes in an HPC system.

A. Mapping Processes

Among the first steps in launching a parallel job is
obtaining computational resources on which to run. Modern
HPC cluster resource managers can allocate compute
resources at the granularity of individual processor cores,
instead of only the more traditional node granularity. For
example, the resource manager may (depending on site policy)
allocate half the cores from node A and half the cores from
node B to a single job.

B. Binding Processes

The process-launching agent of the parallel run-time
environment works with the OS to limit exactly where each

process can run in one of several ways: no restrictions, limited
set restrictions, or specific resource restrictions.

i. No restrictions: The OS scheduler has full autonomy
to decide where the process runs and what resources
it uses.

ii. Limited set restrictions: The process-launching agent
limits the job’s individual processes to run on a
common subset of processors on a node.

iii. Specific resource restrictions: The process-launching
agent assigns specific, unique processors for each
individual process.

VIII. CONCLUSION

As HPC systems continue grow more complex, a

wider variety of process mapping and binding options will be
needed to support these applications. Following best practices
and utilizing expert experience can be an easy way to get
started. By following these guidelines, computing power
provided by the multi-core platform can be systematically
exploited to improve application startup time, runtime
throughput, and algorithm reliability when developing medical
imaging applications.

ACKNOWLEDGEMENT

The author would like to thanks to Department of
Computer Science and Engineering, Annasaheb Dange
College of Engineering and Technology, Sangli.

REFERENCES

[1] Message Passing Interface Forum, MPI: A Message

Passing Interface in Proceedings of Supercomputing ’93,
IEEE Computer Society Press, November 1993, pp. 878–
883.

[2] S. Ethier, W. M. Tang, R. Walkup, and L. Oliker, Large-
scale Gyrokinetic Particle Simulation of Microturbulence
in Magnetically Confined Fusion Plasmas, IBM Journal
of Research and Development, Vol. 52, January 2008,
pp. 105–115.

[3] E. Jeannot and G. Mercier, Near-optimal Placement of
MPI Processes on Hierarchical NUMA Architectures, in
PROCEEDINGS of the 16th International Euro-Par
Conference on Parallel Processing, ser. Euro-Par’10.
Berlin, Heidelberg: Springer-Verlag, pp. 199–210, 2010.

[4] E. Gabriel, G. E. Fagg, G. Bosilca, Open MPI: Goals,
Concept, and Design of a Next Generation MPI

IJSART – Volume 2 Issue 3–MARCH2016 ISSN [ONLINE]: 2395-1052

Page | 341 www.ijsart.com

Implementation, Proceedings of the 11th European
PVM/MPI

[5] F.Alvarado, Parallel Solution of Transient Problems by
Trapezoidal Integration Power Apparatus and Systems,
IEEE Transactions on, Vol.PAS-98, no. 3, May 1979, pp.
1080 –1090.

[6] A. Bose, ParaAllel Processing in Dynamic Simulation of

Power Systems Sadhana,Vol.18,1993, pp. 815–841.

[7] X. Wang, S. Ziavars, C. Nwankpa, J. Johnson, and P.
Nagvajara, Parallel Solution of Newton´s Power Flow
Equations on Configurable Chips, International Journal of
Electrical Power & Energy Systems, Vol. 29, No. 5, pp.
422 – 431, 2007.

[8] D. Falcao, Lecture Notes. Springer-Verlag, 1997, ch.
High performance computing in power system
applications.

[9] http://www.top500.org

[10] http://www.infinibandta.org

