
IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 63 www.ijsart.com

Data Manipulation Using HTML5

Keyur Prajapati1, Patel Mayur H.2

1, 2 MBICT, New V.V.Nagar – 388120, Gujarat, India

Abstract- In this paper we evaluate the potential of the next
major revision of HTML (Hy-pertext Markup Language), that
is HTML5, to provide an effective platform for the
transmission and visualization of vector based geographical
data. Relative to the current version of HTML, HTML 4.01,
HTML5 offers an improved platform to perform these tasks
through greater inter-operability with existing technologies
and the introduction of many new API’s. Visualization of
vector data can be achieved using the new methods of inline-
SVG and the Canvas API. An anal-ysis of the pros and cons of
each method is presented. HTML5 introduces a novel
WebSocket API which defines a full-duplex communication
channel between client and server. This pro-vides improved
data communication both in terms of bandwidth utilization
and network latency relative to existing push technologies. To
demonstrate the effectiveness of HTML5 for vector data
delivery a novel selective progressive transmission
methodology is implemented using the WebSocket and Canvas
API’s.

Keywords- HTML5, Web-Mapping, Progressive Transmission

I. INTRODUCTION

Web application development is in the middle of a
paradigm shift (Kuuskeri and Mikkonen; 2009). The web
browser is rapidly evolving from a renderer of simple HTML
into a runtime environment capable of deliv-ering rich
interactive applications across many application domains
(Melamed and Clayton; 2010). From the users perspective,
web-based applications are becoming more like traditional
desktop applications. De-spite this progress, web-mapping
applications still significantly linger behind their
corresponding desktop counterparts in terms of both interface
and functionality (Shi et al.; 2009). Much of this discrepancy
can be attributed to a number of limitations of the current
version of HTML. In this paper we focus on two limitations in
particular. These are the inability to effectively visualize data
or to perform efficient commu-nication between client and
server. We discuss how HTML5 overcomes these issues and
demonstrate this through a corresponding implementation. The
layout of this paper is as follows. In section 2 we introduce the
Canvas API and inline-SVG which represent the methods
HTML5 provides for data visualization. Sec-tion 3 describes
the webSocket API which HTML5 provides for effective
communication between client and server. Section 4 describes

a selective progressive transmission implementation which
uses the Canvas and webSocket API’s. Finally in section 5 we
draw conclusions with some caveats about the use of HTML5.

II. DATA VISUALIZATION

Before the arrival of HTML5, client based data
visualization could only be performed through plugins such as
Adobe Flash and Scalable Vector Graphics (SVG) (Lubbers et
al.; 2010). Although such plugins provide the required
functionality they reduce the Web’s openness and platform
independence, and tend to lock users to specific technologies
and vendors (Vaughan-Nichols; 2010). In fact, Ian Hickson,
one of the W3C’s HTML5 editors, states that ”One of our
goals is to move the web away from proprietary technologies”.
Due to the inability of the current version of HTML to
visualize data, without the addition of a plugin, only pre-
rendered data may be displayed. In the context of web
mapping this means that the client browser cannot visualize 2-
D vector map data. To overcome this problem most web-
mapping applications, such as Google maps and
OpenStreetMap, pre-rendered the data on the server and
transmit the corresponding images to the client. The client
cannot perform any spatial analysis using such an image-based
representation. They also cannot personalize the map
visualization process in any way - for example changing the
colouring of objects. This represents a significant loss in
functionality relative to desktop GIS applications. When
working with large scale maps of high detail it is necessary to
reduced such detail to prevent user information overload. The
most common means of reducing such detail, and in turn
information overload, is map generalization which is a well
studied cartographical process (Corcoran et al.; 2011). Map
generalization is a progressive process where details are
gradually removed to produce a corresponding set of multi-
scale maps. It is necessary to allow the user of any web-
mapping application to freely choose and move between this
set of scales. If the multi-scale maps are transmitted in their
original vector format, any scale may be represented by the set
of simplifications or refinements which must be applied to the
previous scale (Corcoran and Mooney; 2011). The data size
corresponding to these simplifications or refinements only
represents a small percentage of the overall dataset size which
would otherwise be transmitted. Therefore if a client requests
a particular scale, using a vector representation reduces the
data size which must be transmitted. On the other hand, if the

IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 64 www.ijsart.com

multi-scale maps are transmitted in an image-based format and
a particular scale is requested, the entire data set
corresponding to the scale in question must be transmitted.
This generates significant network traffic and latency.

To overcome the above issues, HTML5 introduces
two methods for data visualization. These are the Canvas API
and inline-SVG which provide pixel and vector based
visualization solutions respectively. Can-vas is a scripting
based graphics environment which transforms drawing
commands into a corresponding raster or image. Cartagen
(Boulos et al.; 2010) is an open-source vector mapping
framework developed at the MIT Media Lab which allows
OpenStreeMap XML data to be downloaded and visualized
using Can-vas. SVG is a language used to describe two-
dimensional objects in XML is now supported as standard by
most browsers. Much research on the applications of SVG to
map representation has been performed (Wang and Meng;
2010). With HTML5, SVG has been natively integrated
through a new <svg> element. Thus, you can now create web
pages with inline-SVG graphics, where the SVG graphics are
fully integrated with the rest of the page; e.g. following CSS
styling, allowing JavaScript to interact with SVG objects,
drawing graphics, or creating effects on hover-over of certain
SVG objects (Pfeiffer; 2010). SVG represents a higher level
means for visualization compared to the Canvas API. SVG
provides a DOM (Document Object Model) and has an event
model not available to Canvas. Thus, for applications that
require graphics with interactivity, SVG represents the better
platform. In cases where such functionality is not required, the
Canvas provides better performance. It is worth nothing that
Adobe Flash/Flex and Microsoft Silverlight have each arrived
at the fact that both pixel and vector based visualization
solutions are necessary. Consequently each technology has
implemented corresponding solutions very similar to the
Canvas API and inline-SVG.

III. CLIENT-SERVER COMMUNICATION

Before discussing client-server communication we
introduce the concepts of network bandwidth and latency
which are fundamental attributes of network performance. The
bandwidth of a network is equal to the number of bits that can
be transmitted over the network in a certain period of time.
Network latency equals the time it takes a message to travel
from one end of a network to the other. Typically
communication between a client and server operates as
follows. The client generates an HTTP request; this is sent to
the server which acknowledges this request and sends back the
response. In certain cases the information contained in the
response may become outdated over time. This would be the
case if the information requested was current stock prices. To

receive real time information the client may continuously
refresh that page manually but this is not an elegant solution.
Current attempts to provide real-time web information
generally use polling and other push technologies, the most
notable of which is Comet, which delays the completion of an
HTTP response. Push technologies exhibit a number of
disadvantages. All communication involves HTTP request and
response headers, which contain additional unnecessary
header data and introduce latency. To simulate full-duplex
communication over half-duplex HTTP, two connections are
used and this is very computationally inefficient. Lubbers et
al. (2010) states that ”simply put, HTTP wasnt designed for
real-time, full-duplex communication”. This has obvious
implications when attempting to transmit vector data over the
internet. To overcome these limitations HTML5 introduces the
WebSocket API which provides a full-duplex communication
channel that operates through a single socket over the web.
This approach to client server communication provides a
significant improvement in network performance, both in
terms of network bandwidth and latency, when compared to
existing push technologies (Lubbers et al.; 2010).

IV. SELECTIVE PROGRESSIVE TRANSMISSION

In order to demonstrate the potential of HTML5 to
provide effective web-mapping solutions a progressive
transmission strategy for the transmission and visualization of
vector data was implemented using HTML5. This work
represents an implementation of some concepts presented in
Corcoran and Mooney (2011). The data used in this work was
taken from OpenStreetMap (OSM). The data is downloaded
initially in OSM XML format. It is then processed,
generalized and stored on the server. Client interaction with
the map, in the form of zooming and panning, is continuously
tracked to allow the current viewing window to be determined;
this information is in turn continuously transmitted to the
server. Upon processing the server determines what data must
be added or removed from the clients local data set and this is
subsequently transmitted. This step uses an R-tree data
structure to perform spatial queries (Samet; 2006). If the client
performs a map zooming, detail is added only to those objects
in the view window such that they are represented at a finer
scale. This implements the concept of selective progressive
transmission. Figure 1(a) displays the Canvas element of the
proposed web-mapping system for a given view. Following a
zooming by the client the map is progressively refined to
increase detail; the corresponding result is displayed in Figure
1(b). All communication between server and client is
performed using the WebSocket API. The vector data is
visualized using the HTML5 Canvas API. The Canvas was
chosen over inline-SVG because this application does not
required the user to select individual objects in the map. The

IJSART - Volume 2 Issue 3 –MARCH 2016 ISSN [ONLINE]: 2395-1052

Page | 65 www.ijsart.com

proposed system differs from the Cartagen project (Boulos et
al.; 2010), which also uses the Canvas API, by the fact that it
is an implementation of selective progressive transmission and
the Cartagen project is not. Network bandwidth performance
of the proposed system was determined using the Linux tool
iptraf. When compared to OSM, which is a tile-based mapping
system, the proposed system exhibited significant superior
bandwidth performance.

(a) (b)

Figure 1: Progressive transmission of the map is performed
when the client performs map zooming.

V. CONCLUSIONS

In this paper we demonstrate that HTML5 represents

an effective platform for the effective transmission and
visualization of vector data. Despite this it is advised that
developers should proceed with caution. HTML5 is still in
development and many of its features are not widely supported
by different browsers. It is estimated that it will be 2013 at the
earliest until HTML5 achieves a sufficient level of browser
support to be considered reliable enough for deployment
(Vaughan-Nichols; 2010). Also many people have raised
security concerns regarding HTML5 which must be
considered (Mansfield-Devine; 2010).

BIBLIOGRAPHY

[1] Boulos, M., Warren, J., Gong, J. and Yue, P. (2010). Web

GIS in practice VIII: HTML5 and the canvas element for
interactive online mapping, International Journal of
Health Geographics 9(1): 14.

[2] Corcoran, P. and Mooney, P. (2011). Topologically

Consistent Selective Progressive Transmission, 14th
AGILE International Conference on Geographic
Information Science

[3] Lubbers, P., Albers, B. and Salim, F. (2010). Pro HTML5

Programming: Powerful APIs for Richer Internet
Application Development, Apress.

[4] Melamed, T. and Clayton, B. (2010). Mobile Computing,
Applications, and Services, Springer, chapter A
Comparative Evaluation of HTML5 as a Pervasive Media
Platform, pp. 307–325.

[5] Pfeiffer, S. (2010). The Definitive Guide to HTML5

Video, Apress.

[6] Samet, H. (2006). Foundations of Multidimensional and

Metric Data Structures, Morgan Kaufmann.

