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Abstract- The present study focuses on the analysis of square 
columns under the self-weight buckling. The finite element 
analysis is conducted as the function of thickness as parameter 
and the under gravity the eigen values are studied for the first 
12 mode shapes and it is found that for every two-mode shape 
are identical in nature in respective of magnitude of 
deformation .The regression analysis of the data for the first 
two mode shape are considered and  an equation is framed as 
the function of mode shape deformation and the thickness and 
it is found that as the thickness goes on increases there is 
decrease in the deformation. 
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I. INTRODUCTION 
 

Buckling is the phenomena which occurs in the 
columns which slenderness ratio defines the type of buckling. 
The of length to the minimum radius of gyration or the 
characteristic length gives the slenderness ratio denoted by 
“λ”. The three types of buckling are if the slenderness ration 
equals do not exceed 50 then it is called as short columns, and 
if the slenderness ration equals to 200 then it is called as long 
columns and if the slenderness ration is in between 50 to 200 
then it is called as midrange columns. The possible 
configurations of buckling are dependent on the boundary 
conditions.  

 

 
Figure 1 Type of buckling under the load and boundary 

conditions 

the solution for the all types of configurations is different 
which is given by the Rankin and the it is function of the load 
and geometric parameters and the constant. The quantification 
of the buckling deformation is made in terms of mode shapes 
and eigen values. The buckling can happen by the load acting 
in it longitudinally and load by itself this type of buckling is 
called as self-weight buckling. This self-weight buckling is a 
natural type and often encounter in most cases. Though there 
are many mode shapes possible the first two cases are widely 
seen like in current poles, and even applied to construction of 
towers and structures. 

 
II. LITERATURE REVIEW 

 
The exact solution for the self-weight buckling with 

different boundary conditions are analyzed by (Duan en 
Wang)[1]. The buckling of thin cylinder under the axial 
compression loading is analyzed experimentally by (Mandal 
en Calladine) [2]. The self-weight buckling of non-Prismatic 
columns have analyzed by the (Wei et al.) [3]. The slender 
elastic buckling by the self-weight  under double hinged 
condition is analyzed by the (Vaz en Mascaro)[4]. The 
Paradoxical behavior of the  self-weight buckling have studied 
by the (Lancaster, Calladine, en Palmer)[5]. The computation 
of self-weight buckling by the p -element through various 
shell theories have been made by the (Lim en Ma)[6]. 

 
III. METHODOLOGY 

 
The core idea is the derive a function that the is in the 

function of thickness and the load where the material constants 
are made as constants for the type 4 condition for the standard 
benchmark problem statement which is defined as flows. 

 

 
Figure 2 schematic drawing of problem statement 
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Table 1 The Design nomenclature variables and their values 
used in the analysis 

Si.no Variable Symbol Value Units 
1 Length L 1 m 
2 Gravity g 9.81 m/s 

3 Cross-section 
area A Parametric m 

4 Thickness t Parametric m 

5 Young’s 
Modulus  E Parametric  MPa 

6 Second Moment 
of Inertia I Parametric  - 

7 Density  ρ Parametric  Kg/m3 
 
Here it is to be noted as the crosection and the 

thickness are related to each other and since the both the 
variables are parametric the thickness “t” is assigned from 
0.05 m, 0.10 m, The critical height for which the self-weight 
buckling acts is as follows 

 

3 7.8373critical
EIL
gA

  ……………..(1) 

 

Since we know that the “g” is constant and equal to the 9.81 m/s 
then the eq(1) is defined as follows. 
 

3 0.789critical
EIL

A ………… (2)  

The area of the cross section as the function of thickness “t” is 
given as follows  

2 2 ( )out in out inA A A t A A     …… (3) 

On substituting eq (3) in eq (2) then the critical length is 
defined as follows. 

3 0.789
( )critical

out in

EIL
t A A


  

…….. (4) 

The equivalent buckling load for the type 4 condition with the 
critical length is given as the follows. 

2

34 0.789
( )

eq

out in

EIF
EI

t A A









  

……….. (5) 

The total deformation caused by the load applied is given as 
follows  

( )
critical

out in

F L
E t A A





  

……….. (6) 

so, the deformation is the function of thickness i.e as 
the thickness decrease the deformation also decreases for the 
following equation  

0.662
1.660.7892.48 ( ( ))out in

EI t A A


 
     

 
……

… (7) 
 
Clearly from above the equation the deformation is function 
of thickness as follows. 

( )f t  ………………. (8) 

 
The deformation is studied as the eigen values. 

 
III. FINITE ELEMENT ANALYSIS 

 
The finite element analysis was conducted to find the 

deformation of the eigen values, since the deformation due to 
buckling cannot be found directly so the coupled system 
analysis is conducted with the over 997 nodes with the 
element type of SOLID186 with symmetric solver. 
 

 
Figure 3  The mesh model of the column (a) the 2x scale of 

brick mesh of the model 
 

 
Figure 4 The boundary conditions applied to meshed model 

 
the static structural system solution is made as pre-stress 
environment and coupled with Eigenvalue Buckling system. 
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This helps in solving the both the deformation and 
the model analysis to form the buckling mode shapes . 
 

IV. RESULTS 
 

After the analysis is solved the path solution along the Y-axis 
of the model is chosen  in order to plot the deformation 

 
Figure 1 The path solution edge 

 

The deformation results obtained are shown in below. 

 
Figure 2 Buckling of thin section for 5 mm thickness 
 

 
Figure 3 buckling of thin section for the 10-mm 

thickness 
 
It is inferred form the above graphs the mode shapes 

formed as the resultant of the deformation of buckling. And 
there exist a identical shape structure in deformation. 

V. CONCLUSION 
 

It is found the above study that in decrease in the 
thickness of the columns there is magnitude decrease in the 
deformation, but the mode shape of the buckling i.e. 
deformation of the columns will have double identical mode 
properties and will not be repeated.  
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