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Abstract- The present study focuses on the analysis of square
columns under the self-weight buckling. The finite element
analysis is conducted as the function of thickness as parameter
and the under gravity the eigen values are studied for the first
12 mode shapes and it is found that for every two-mode shape
are identical in nature in respective of magnitude of
deformation .The regression analysis of the data for the first
two mode shape are considered and an equation is framed as
the function of mode shape deformation and the thickness and
it is found that as the thickness goes on increases there is
decrease in the deformation.
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1. INTRODUCTION

Buckling is the phenomena which occurs in the
columns which slenderness ratio defines the type of buckling.
The of length to the minimum radius of gyration or the
characteristic length gives the slenderness ratio denoted by
“X”. The three types of buckling are if the slenderness ration
equals do not exceed 50 then it is called as short columns, and
if the slenderness ration equals to 200 then it is called as long
columns and if the slenderness ration is in between 50 to 200
then it is called as midrange columns. The possible
configurations of buckling are dependent on the boundary
conditions.
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Figure 1 Type of buckling under the load and boundary
conditions
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the solution for the all types of configurations is different
which is given by the Rankin and the it is function of the load
and geometric parameters and the constant. The quantification
of the buckling deformation is made in terms of mode shapes
and eigen values. The buckling can happen by the load acting
in it longitudinally and load by itself this type of buckling is
called as self-weight buckling. This self-weight buckling is a
natural type and often encounter in most cases. Though there
are many mode shapes possible the first two cases are widely
seen like in current poles, and even applied to construction of
towers and structures.

1. LITERATURE REVIEW

The exact solution for the self-weight buckling with
different boundary conditions are analyzed by (Duan en
Wang)[1]. The buckling of thin cylinder under the axial
compression loading is analyzed experimentally by (Mandal
en Calladine) [2]. The self-weight buckling of non-Prismatic
columns have analyzed by the (Wei et al.) [3]. The slender
elastic buckling by the self-weight under double hinged
condition is analyzed by the (Vaz en Mascaro)[4]. The
Paradoxical behavior of the self-weight buckling have studied
by the (Lancaster, Calladine, en Palmer)[5]. The computation
of self-weight buckling by the p -element through various
shell theories have been made by the (Lim en Ma)[6].

1. METHODOLOGY

The core idea is the derive a function that the is in the
function of thickness and the load where the material constants
are made as constants for the type 4 condition for the standard
benchmark problem statement which is defined as flows.
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Figure 2 schematic drawing of problem statement
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Table 1 The Design nomenclature variables and their values
used in the analysis

Si.no Variable Symbol Value Units
Length L 1 m
Gravity g 9.81 m/s
3 Cross-section A Parametric m
area
4 Thickness t Parametric m
5 Young's E Parametric MPa
Modulus
6 Second Mo_ment I Parametric -
of Inertia
7 Density p Parametric | Kg/m®

Here it is to be noted as the crosection and the
thickness are related to each other and since the both the
variables are parametric the thickness “t” is assigned from
0.05 m, 0.10 m, The critical height for which the self-weight
buckling acts is as follows

Leritical = 3’7.8373i ................. 1)
pYA

Since we know that the “g” is constant and equal to the 9.81 m/s
then the eq(1) is defined as follows.

Leitical— 3/0.789ﬂ e (2)
pA

The area of the cross section as the function of thickness “t” is
given as follows

A=A A =t-(A, +A,) . B

On substituting eq (3) in eq (2) then the critical length is
defined as follows.
El

Lcritical = ?\’/0789
Yy -1 '(A\aut + Ain)

The equivalent buckling load for the type 4 condition with the
critical length is given as the follows.

2
= L ©)

« El
4-9\,/0.789
P 't'(A\Jut + Ain)

The total deformation caused by the load applied is given as
follows

F- Lcritical ___________ (6)

o=
E't'(AJut +Ain)
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so, the deformation is the function of thickness i.e as
the thickness decrease the deformation also decreases for the
following equation

{0.789- El2 T“

5 =248 (A AN

. (7)

Clearly from above the equation the deformation is function
of thickness as follows.

The deformation is studied as the eigen values.
I1I. FINITE ELEMENT ANALYSIS

The finite element analysis was conducted to find the
deformation of the eigen values, since the deformation due to
buckling cannot be found directly so the coupled system
analysis is conducted with the over 997 nodes with the
element type of SOLID186 with symmetric solver.
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Figure 3 The mesh model of the column (a) the 2x scale of
brick mesh of the model
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Figure 4 The boundary conditions applied to meshed model

the static structural system solution is made as pre-stress
environment and coupled with Eigenvalue Buckling system.
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This helps in solving the both the deformation and
the model analysis to form the buckling mode shapes .

IV. RESULTS

After the analysis is solved the path solution along the Y-axis
of the model is chosen in order to plot the deformation
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Figure 1 The path solution edge

The deformation results obtained are shown in below.
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Figure 2 Buckling of thin section for 5 mm thickness
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Figure 3 buckling of thin section for the 10-mm
thickness
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It is inferred form the above graphs the mode shapes
formed as the resultant of the deformation of buckling. And
there exist a identical shape structure in deformation.
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V. CONCLUSION

It is found the above study that in decrease in the
thickness of the columns there is magnitude decrease in the
deformation, but the mode shape of the buckling i.e.
deformation of the columns will have double identical mode
properties and will not be repeated.
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