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Abstract- Channel allocation was extensively investigated in 
the framework of cellular networks, but it was rarely studied 
in the wireless ad hoc networks, especially in the multihop 
networks. In this paper, we study the competitive multiradio 
multichannel allocation problem in multihop wireless 
networks in detail. We first analyze that the static non 
cooperative game and Nash equilibrium (NE) channel 
allocation scheme are not suitable for the multihop wireless 
networks. Thus, we model the channel allocation problem as a 
hybrid game involving both cooperative game and non 
cooperative game. Within a communication session, it is 
cooperative; and among sessions, it is non cooperative. We 
propose the min-max coalition-proof Nash equilibrium 
(MMCPNE) channel allocation scheme in the game, which 
aims to maximize the achieved data rates of communication 
sessions. We analyze the existence of MMCPNE and prove the 
necessary conditions for MMCPNE. Furthermore, we propose 
several algorithms that enable the selfish players to converge 
to MMCPNE. Simulation results show that MMCPNE 
outperforms NE and coalition-proof Nash equilibrium (CPNE) 
schemes in terms of the achieved data rates of multihop 
sessions and the throughput of whole networks due to 
cooperation gain. 
 

I. INTRODUCTION 
 
   WIRELESS communication system is often assigned 
a certain range of communication medium (e.g., frequency 
band). Usually, this  medium is shared by different users 
through multiple access techniques. Frequency Division 
Multiple Access (FDMA), which enables more than one users 
to share a given frequency band, is one of the extensively used 
techniques in wireless networks. In FDMA, the total available 
bandwidth is divided permanently into a number of distinct 
sub bands named as channels. Commonly, we refer to the 
assignment of radio transceivers to these channels as the 
channel allocation problem. An efficient channel allocation is 
essential for the design of wireless networks In this paper, we 
present a game-theoretic analysis of fixed channel allocation 
strategies of devices that use multiple radios in the multihop 
wireless networks. Static Non cooperative game is a novel 
approach to solve the channel allocation problem in single-hop 
networks, and Nash equilibrium (NE) provides an efficient 

criterion to evaluate a given channel allocation. Hence, we 
introduce a hybrid game involving both cooperative game and 
non cooperative game into our system in which the players 
within a communication session are cooperative, and among 
sessions, they are non cooperative. 
             

We also define three other equilibria schemes that 
approximate to MMCPNE, named as minimal coalition-proof 
Nash equilibrium (MCPNE), average coalition-proof Nash 
equilibrium (ACPNE), and I coalition-proof Nash equilibrium 
(ICPNE), respectively. Then, we study the existence of 
MMCPNE in this game and main result, Theorem 2, shows 
the necessary conditions for the existence of MMCPNE. 
Furthermore, we propose the MMCP algorithm which enables 
the selfish players to converge to MMCPNE from an arbitrary 
initial configuration and the DCP-x algorithms which enable 
the players converge to approximated MMCPNE states (e.g., 
MCPNE, ACPNE, and ICPNE). Finally, we present the 
simulation results of the proposed algorithms, which show that 
MMCPNE outperforms NE and coalition-proof Nash 
equilibrium (CPNE) channel allocation schemes in terms of 
the achieved data rates of multihop sessions and the 
throughput of whole networks due to cooperative gain present 
the simulation results of previous algorithms 
 

II. RELATED WORK 
       

There has been a considerable amount of research on 
channel allocation in wireless networks, especially in cellular 
networks. Three major categories of channel allocation 
schemes are always used in cellular networks: fixed channel 
allocation (FCA), dynamic channel allocation (DCA), and 
hybrid channel allocation (HCA) which is a combination of 
both FCA and DCA techniques. In FCA schemes, a set of 
channels is permanently allocated to each cell in the network. 
general, graph coloring/labeling technique provides an 
efficient way to solve the problems of fixed channel 
allocation. FCA method can achieve satisfactory performance 
under a heavy traffic load; however, it cannot adapt to the 
change of traffic conditions or user distributions. To overcome 
the inflexibility of FCA, many researchers propose dynamic 
channel allocation methods .In DCA schemes, in there is no 
constant relationship between the cells and their respective 
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channels. All channels are potentially available to all cells and 
are assigned dynamically to cells as new calls arrive in. 
Because of its dynamic property, the DCA method can adapt 
to the change of traffic demand. However, when the traffic 
load is heavy, DCA method performs worse than FCA due to 
some cost brought by adaptation. Hybrid channel allocation 
schemes are the combination of both FCA and DCA 
techniques. In HCA schemes, the total number of available 
channels are divided into fixed and dynamic sets.                  
            

The fixed set contains a number of nominal channels 
that are assigned to the cells as in the FCA schemes, whereas 
the dynamic set is shared by all users in the system to increase 
flexibility. Recently, channel allocation problem is becoming a 
focus of research again due to the appearance of new 
communication technologies, e.g., wireless local area 
networks (WLANs), wireless mesh networks (WMNs and 
wireless sensor networks (WSNs).Using weighted graph 
coloring method, Mishra et al. propose a channel allocation 
method for WLANsin, InWMNs, many researchers have 
considered devices using multiple radios. Equipping multiple 
with radios in the devices in WMNs, especially the devices 
acting as wireless routers, can improve the capacity by 
transmitting over multiple radios simultaneously using 
orthogonal channels. In the multiradio communication 
context, channel allocation and access are also considered as 
the vital topics. By joint considering the channel assignment 
and routing problem. 
                  

In the above cited work, the authors make the 
assumption that the devices cooperate with the purpose of the 
achievement of high system performance. However, this 
assumption might not hold for the following two reasons. In 
one hand, players are usually selfish who would like to 
maximize their own performance without considering the 
other players’ objective. In the other hand, the full cooperation 
of arbitrary devices is difficult to achieve due to the 
transmission distance limitation and transmission interference 
of neighboring devices. 

 
 

Game theory provides a straightforward tool to study 
channel allocation problems in competitive wireless networks. 
As far as know, game theory has been applied to the 
CSMA/CA protocol  to the Aloha protocol  and the peer-to-
peer (P2P) system. Furthermore, on the basis of graph 
coloring, Halldorsson et al. use game theory to solve a fixed 

channel allocation problem. Unfortunately, their model does 
not apply to multiradio devices. In wireless ad hoc networks 
(WANETs), using a static non cooperative game. 
        

However, their results can be only applied to single-
hop wireless networks without considering multihop networks. 
In this paper, we extend the results to the wireless networks 
with arbitrary hops. 
 

III. SYSTEM MODEL AND GAME FORMULATION 
 
3.1 System Model 
 

We assume that the available frequency band is 
divided into M orthogonal channels of the same bandwidth 
using the FDMA method (e.g., 24 orthogonal channels in case 
of the IEEE 802.11a protocol).  In our model, we assume that 
there exist L communication sessions,1 including multihop 
and single-hop sessions. We further assume that each user 
participates in only one session, either being a ending user or a 
relaying user, and thus, we can divide all users into L disjoint 
groups.  
          

We assume that all sessions reside in a single 
collision domain, which means that each session will interfere 
the transmission of all other sessions if they are using the same 
channel. Note, however, that the users within a session may 
reside in different collision domains, e.g., in a multihop 
session. We assume that each user owns a device equipped 
with two independent sets of radio transceivers, which used to 
transmit and receive the data packets, respectively. Each 
transceivers set contains K <jCj radio transceivers, all having 
the same communication capabilities. 2 We assume that the 
communication between two users is bidirectional and they 
always have some packets to exchange.  
        

Due to the bidirectional communication, transmitter’s 
and receiver’s  are able to coordinate, and thus, to select the 
same channels to communicate. We assume that there is a 
mechanism that enables the multiple radios with transceivers 
set to communicate simultaneously by using orthogonal 
channels. We further assume that the total available bandwidth 
on channel c is shared equally among the radios using that 
channel. This fair rate allocation is achieved, for example, by 
using a reservation- based TDMA schedule on a given 
channel. Even if the radio transmitters are controlled by selfish 
users in the CSMA/CA protocol, they can achieve this fair 
sharing. 
 
3.2 Game Formulation 
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We refer to each communication link as a selfish 
player. A communication link is defined as a direct connection 
of two users. It is obvious that each N-hop session contains N 
links and each link contains K pairs of radios. In the example 
of Fig. 1, there are four communication links, i.e., s1 $ d1, s2 
$ r21 , r21 $ d2, and s3 $ d3, where i $ j denotes a direct 
connection of users i and j. For the simplicity of presentation, 
we rewrite player as the user at left-hand side of the link. 
Thus, the players set, denoted by U, can be defined as the set 
of all senders and relaying users.  We denote the number of 
radios of player i using channel c by ki;c for every c 2 C. We 
further denote the set of channels used by player i by Ci. For 
the sake of suppressing coradios interference in device, we 
assume that the different radios within a transceiver set cannot 
use the same channel, i.e., ki;c 2 f0; 1g for arbitrary player i 2 
U and channel c 2 C. Each player’s strategy consists of the 
number of radios on each of the channels. 
 

IV. NASH EQUILIBRIA 
 
4.1 Non cooperative Game NE 
          

In single-hop networks, the payoff of player i is 
equivalent to its utility Ri and the multiradio channel 
allocation problem can be formulated as a static non 
cooperative game. 

  

 
4.2 Cooperative Game CPNE 
 

In single-hop networks, the payoff of player i is 
equivalent to its utility Ri and the multiradio channel 
allocation problem can be formulated as a static non 
cooperative game. In order to study the strategic interaction of 
the players in such a game, we first introduce the concepts of 
Nash equilibrium.  
 
Definition 1 (NE). The strategy matrix XX_ ¼ fx_ 1; . . . ; x  
jUjg defines a Nash Equilibrium, if for every player i 2 U, we 
have 

 
for every strategy x0 i, where RiðXXÞ denotes the utility of 
player i in strategy matrix XX. The definition of NE expresses 
the resistance to the deviation of a single player in non 
cooperative game. In other words, in an NE, none of the 
players can unilaterally change its strategy to increase its 
payoff. An NE solution may be inefficient from the system 
point of view. We characterize the efficiency of the solution 
by the concept of Pareto optimality.         
 
Definition 2 (Pareto Optimality). The strategy matrix XXop is 
Pareto-optimal if there does not exist any strategy XX0 such 
that the following set of conditions is true: 
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This means that in a Pareto-optimal channel allocation XXop, 
one cannot improve the payoff of any player without 
decreasing the payoff of at least one other player.   
 
Definition 3 (CPNE). The strategy matrix XXcp defines a 
coalition-proof Nash Equilibrium, if for every coalition _x 2 
Q, we have 

 
for every strategy set XX0 
 

This means that no coalition can deviate from XXcp 
such that the utility of at least one of its members increases 
and the utilities of other members do not decrease. 
 
Definition 4 (MMCPNE). The strategy matrix XXmm defines 
a novel coalition-proof Nash Equilibrium, if for every 
coalition _x 2 Q, we have 

 
for every strategy set XX0 
 
Definition 5 (MCPNE).  
             

The strategy matrixXXm defines a special coalition-
proof Nash Equilibrium, if for every player. 

 
for every strategy x0 i, where _x is the coalition player i 
belongs to, i.e., i 2 _x 
 
Definition 6 (ACPNE). 
                

The strategy matrix XXa defines a special coalition-
proof Nash Equilibrium, if for every player.  
 
Definition 7 (ICPNE). 
  

The strategy matrix XXs defines a special coalition-
proof Nash Equilibrium, if for every player i 2 U, we have 

 
 

             Obviously, players within a coalition can select their 
strategies independently to achieve the above three 
approximated MMCPNE situations, and thus, the 
computations increase linearly to the size of coalition. 

 
Fig. 4. The resulting utility for player i choosing xni 

or 

.  
for every strategy x0i. 
         

Nash equilibrium with a judiciously designed 
objective function, rather than coalition-proof Nash 
equilibrium of cooperative game. We show the difference of 
MCPNE, ACPNE, and ICPNE by an example of two-player 
coalition . Without loss of generality, we assume that there are 
six strategies for player. and the resulting utility for selecting 
one of the strategies. For  MCPNE, each player would like to 
choose the strategy which maximizes the minimal utility of 
players within the coalition, and thus, the best strategies for 
player.  While for ACPNE, each player would like to choose 
the strategies which maximize the minimal utility and further 
maximize the average utility of players within the coalition. 
Similarly, for ICPNE, each player would like to choose the 
strategies which maximize the minimal utility and further 
maximize its own utility. Thus, for ACPNE and ICPNE, the 
best strategies of player. In order to provide an intuitionistic 
impression, we show the previous channel allocation schemes 
by properties. The fact of MMCPNE being a subset of 
MCPNE can be proved by contradiction as follows: Assume 
that there exists an MMCPNE strategy matrix XXmm which is 
not an MCPNE, then according to Definition 5, there exists at 
least one player (say i) who can improve the minimal utility of 
its coalition (say x) by changing its strategy, which implies 
that there exists a coalition, i.e., x, that can improve the 
minimal utility of its members by changing its member i’s 
strategy. According to Definition 4, XXmm cannot be an 
MMCPNE, which leads to a contradiction. Thus, we declare 
that an MMCPNE must be an MCPNE.   
 

V. EXISTANCE OF MMCPNE 
                    

In this section, we study the existence of Nash 
equilibria and min-max coalition-proof Nash equilibria in the 
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single collision domain channel allocation game. It is 
straightforward to see that if the total number of radios  is 
smaller than or equal to the number of channels, then a flat 
channel allocation, in which the number of radios per channel 
does not exceed one, is a Nash equilibrium.      

.  
      
5.1 NE in Multihop Networks 
 
                   The first condition  shows that a player cannot 
assign two radios with the same channel due to the coradios 
interference in device, and the second condition shows that a 
selfish player would like to use all of his radios in order to 
maximize his total bandwidth. The first two conditions 
provide the necessary conditions for NE from the aspect of 
individual players. The third condition shows that the whole 
system will achieve load-balancing over the channels in an 
NE. The third condition provides the necessary condition for 
NE from the aspect of whole system.   We divide the channels 
in NE into two sets: Cþ, which contains the channels selected 
by relatively more players which contains the channels 
selected by relatively less players. We denote the number of 
radios deployed on the channel. 
 
Fig. 6. An example of MMCPNE channel allocation 
corresponding to Proposition. 

 
 
 

 
         

However, that Nash equilibrium is not suitable for the 
multihop wireless networks as mentioned previously. 
 
 Fig. 7. Summary of MMCPNE and NE channel allocations 
with different properties. 
 

 
 
5.2 MMCPNE in 2-Hop Networks 
 
         In this section, we study the MMCPNE in short-path 
networks in which each session contains at most 2 hops, i.e., 
each coalition contains at most two players. It is easy to see 
that all players in 2-hop networks reside in a single collision 
domain. Although none of the players can unilaterally change 
its strategy to increase its payoff in NE, it is possible that a 
player changes its strategy to improve the utility of another 
player he is in a coalition with, e.g., u1 and u2 in Fig. 3. 
 
Fig. 8. An example of NE channel allocation 
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5.3 MMCPNE in N-Hop Networks 
 
               In this section, we study the MMCPNE in long-path 
networks in which at least one session contains N >2 hops. We 
will show that through the judiciously designing of scheduling 
scheme, the existence of MMCPNE in N-hop networks can be 
transformed into the problem in 2-hop networks. 
 
Fig. 10. An example of a 3-hop communication session. 

 
VI. SIMULATION RESULTS 

 
6.1 Simulation Setup 
 
        We implemented the previous algorithms in MATLAB 
and with a special focus on wireless IEEE 802.11a protocol. 
For multiradio device, the adjacent 802.11a channels interfere 
in practical communication (although they are theoretically 
orthogonal), but nonadjacent channels do not interfere.  
 
Fig. 11. An example for (a) a best case and (b) a worst case of 
NE channel allocation in terms of the payoff of coalition _x ¼ 
fu1; u2g, where 
jCj ¼ 8, jUj ¼ 9, and K ¼ 3. 

 
 
6.2  Performance of Networks 
   
          We investigate the performance of the whole 
networks in different equilibrium states. To evaluate the 

performance of the networks, we introduce the concept of 
networks throughput. 
 
Fig. 17. Average throughput versus time using W ¼ 15, jCj ¼ 
8, jUj ¼ 5, K ¼ 4, and _x ¼ fu1; u2g. 

 
 

VII. CONCLUSION 
 
     In this paper, we have studied the problem of 
competitive channel allocation among devices which use 
multiple radios in the multihop networks. We first analyze that 
NE and CPNE channel allocation schemes are not suitable for 
the multihop networks due to the poor performance of 
achieved data rate of the multihop sessions. Then, we propose 
a novel coalition-proof Nash equilibrium, denoted by 
MMCPNE, to ensure the multihop sessions to achieve high 
data rate without worsening the performance of single-hop 
sessions. We investigate the existence of MMCPNE and 
propose the necessary conditions for the existence of 
MMCPNE. Finally, we provide several algorithms to achieve 
the exact and approximated MMCPNE states. We study their 
convergence properties theoretically. Simulation results show 
that MMCPNE outperforms CPNE and NE schemes in terms 
of the achieved data rates of multihop sessions and the 
throughput of whole networks due to cooperation gain. 
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