
IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 

Page | 301                                                                                                                                                                     www.ijsart.com 
 

Protected Search Model for Encrypted Data in Cloud 
Computing 

 
Juber Mirza1, Avdesh Kumar Sharma2 

1, 2 Department of Computer Science & Engineering 

1, 2 SVITS- SVVV Indore 
 

Abstract- Cloud services have also become renowned because 
of reduction in the cost of storage and flexibility of use, but 
there is the risk of data loss, misuses and theft. Reliability and 
security of data stored in the cloud are a matter of concern, 
specifically for critical cloud applications and ones for which 
data security and privacy is important. Sensitive data 
commonly have to be encrypted before outsourcing. Efficient 
and secure search on encrypted data is a primary concern in 
computer science. In Existing Symmetric solution of 
searchable encryption, if disclosure of cryptographic key 
during the key exchange, can affect the security and privacy of 
data and data owner. Most of the search engines utilize the 
concept of indexing and the store the information on the local 
disk. This may increase the need of additional storage space a 
compression technique is required to reduce the storage 
overhead. The proposed work, constructs a new methodology 
of searching using Efficient and privacy preserving fuzzy 
keyword search algorithm over encrypted cloud data while 
maintaining keyword privacy. Use edit distance to quantify 
keywords similarity and cultivate an advanced technique on 
constructing fuzzy keyword sets. We use the hybrid crypto 
system for encrypting data file that utilizes the benefits of both 
symmetric key and public key cryptographic methods using 
AES and RSA. Construct the inverted index for fuzzy keyword 
set using hash tree methods and Applying Variable Byte 
Encoding (VBE) for index compression, so that we can reduce 
storage space on inverted index, and improve the search 
performance. We use bloom filters to perform simple as well 
advanced search in constant time. Which proves to be much 
faster and efficient than the traditional one. Combining both 
the symmetric-key and public-key algorithms provide greater 
security and Indistinguishability under Adaptive-Chosen 
Cipher text Attack. Through rigorous security analysis, we 
demonstrate that our proposed solution is secure and privacy-
preserving, while correctly realizing the goal of the fuzzy 
keyword search. The implementation of the system is 
performed using the JAVA technology and for the deployment 
of the developed SaaS is performed using the public cloud 
(Open Shift). For obtaining the performance of the developed 
technique the performance of the system is also evaluated and 
reported in terms of precision, recall, f-measures, time 
complexity and space complexity. The performance outcomes 
demonstrate the improved performance of searchable 

encryption technique over the cloud environment. 
 
Keywords- Cloud security, Protect Outsource data, Privacy on Cloud, 
Trustworthy Cloud. 
 

I. INTRODUCTION 
 

The invention of the computer opens a number of 
rich domains for comforting the human beings and changing 
the life much rapidly. The need of human being in terms of 
computational ability is increases continuously and for 
supporting them a different kinds of efforts are made. Among 
the cloud computing is one of the most popular infrastructures 
for supporting the computational needs. This chapter provides 
the basic overview about the conduced study around the cloud 
computing. 

 
Due to the growth of the technology and need of 

scalable computing and storage need to develop new 
techniques of storage and computation. The cloud computing 
provides a significant solution for the scalable computational 
need and the storage solution. The scalability of the storage or 
the computation is achieved by sharing of physical and logical 
resources. Due to these functional aspects the cloud server 
providers are collaborating with a number of data centers and 
keep their data on other servers for reducing the data 
management overheads. This concept of the data management 
is termed as the data outsourcing [1]. Most of the time due to 
security reasons and the privacy concerns the data stored on 
other servers in the cryptographic manner. Such kind of cloud 
storage is sometimes also known as the cryptographic cloud. 

 
In this presented work the data retrieval process from 

the cryptographic cloud is studied in detail. In addition of that 
some key issues are also addressed by which the current 
security over the cryptographic cloud becomes suspected. 
Thus, in order to manage these issues a new technique of 
privacy preserving and secure technique of data retrieval is 
proposed in this work for development. The proposed concept 
of secure, searchable encryption technique improves the 
security and privacy of all the ends, i.e. data owner, storage 
and retrieval process. 

 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 302                                                                                                                                                                     www.ijsart.com 
 

This section provides the formal introduction of the 
proposed work and their domain aspects in the further sections 
the key addressed issues, motivation and objectives are 
reported to understand the proposed work and their need in the 
current generation data security and privacy management. 

 
II. LITERATURE SURVEY 

 
Cloud computing is an evidence of the growth of 

computational technology. Continuous and improved 
approaches are responsible for designing and development of 
their essential services. Therefore a number of technological 
experts and organizations are contributing for improving more 
and more the new generation technology. Clouds, by their 
nature, bring together many of the different technologies that 
have evolved over the last 30 years. Therefore, various lessons 
learned in other information technology sectors might have 
relevance to the future of cloud computing. Several clients 
needed to access information on separate terminals, but these 
technologies are expensive enough. To save money and the 
computational cost required to find a method by which 
multiple users share CPU according to time. In the 1950s, 
"time-sharing" is considered for corporations with 
computational power and resources. From there, to the stage 
of cloud development is a stepwise process [3]. 

 
The ideas of pioneers like J.C.R. Licklider were 

given an idea in the 1960s. They introduced the idea for an 
“Intergalactic computer network”. Licklider developed 
ARPANET (Advanced research Projects Agency Network) 
envisioning computation in the form of a global network and 
hoped one day everyone could access data and programs from 
anywhere. The term “Cloud Computing” was first used by 
professor Ramnath Chellappa in late 1997, that is a start of the 
development new technological era. 

 
The explosive growth of data and once all of that data 

comes into being. Required a manner to store it all securely 
and allow end-users to access it efficiently. That demand is 
what’s putting a silver lining on the cloud. Within just a few 
years, companies began switching from hardware to cloud 
services because they were attracted to benefits like a 
reduction in capital costs as well as an easing in IT man power 
issues. In 1999, Salesforce.com became the first site to deliver 
applications and software over the Internet. 

 
In 2002 AWS providing an advanced computational 

system using cloud services and in 2006, Amazon introduced 
the Elastic Compute Cloud (EC2) as a commercial web 
service. The developer-based platform is first developed by 
Salesforce.com in 2007, with Force.com. That is, able to build 
and run all of their business apps and website through the 

cloud. The Google App Engine brought low-cost computing 
and storage services, popularizing the concept in 2009. Google 
Apps allows people to store documents within the cloud. 
Microsoft followed with Windows Azure. 

 
In 2010 with Database.com a platform again made 

for developers. Using this cloud allowed computing services 
to be used on any device or platform in any programming 
language. In order to allowing users to sync photos, apps, 
music and documents across a string of devices Apple put a 
concept by developing the iCloud. 

 
This section provides the historical development and 

improvements on the computational cloud growth in the next 
section a detailed description is presented for understanding 
the cloud services and their distribution. 

 
III. PROPOSED WORK 

 
3.1 Domain Description 

 
As the amount of data for storage and retrieval on the 

third party server increases the need of sensitivity and privacy 
management is necessary to improve. Therefore a number of 
efforts are placed recently to promote the concept of secure 
search techniques among them the searchable cryptography is 
a well technique for achieving both. In this presented work the 
main aim is to develop an enhanced searchable cryptographic 
technique by which not only the security and privacy is kept in 
track the search performance in terms of efficiency and search 
time is also improved. The proposed technique is also much 
helpful for reducing the storage overhead to maintain the 
index for search terms. 

 
Therefore the proposed technique involves the 

different pre-defined concepts and techniques that are helps to 
improve the cryptographic search processes. As usual the 
cryptographic process involves additional effort for process 
and converting the data therefore the additional time and 
storage is need to compensate with some improvement 
techniques. Therefore the given section involved the reporting, 
indexing technique, compression technique, cryptographic 
technique and the fuzzy concept for improving the search. 
Additionally a combined data model is also reported in this 
chapter that arranged in a specific manner to improve the 
security, privacy and the search relevancy. 

 
This section provides the basic overview of the 

proposed technique and the involved components for 
improving the cryptographic data search. In addition of that 
the next section provides the detailed understanding about the 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 303                                                                                                                                                                     www.ijsart.com 
 

different aspects involved with the proposed searchable 
cryptographic data model. 

 
3.2 Proposed Technique 

 
This section provides the detailed description of the 

proposed work model for improved cryptographic search 
processes. The figure 3.1 shows the entire concept of the 
proposed model that involved data file holder, input shopper 
and cloud server. Given a compilation of N encrypted data file 
C = (DF1, DF2, . . . , DFN) reserved in the cloud server, a 
predefined collection of isolated keywords W = {w1,w2, 
......wN}, the cloud server provides the search service for the 
authentic users by the unscripted data C. Assume the approval 
among the data possessor and data users is properly done. An 
authentic user enters in an appeal to retrieve selected data files 
of individual passion. The cloud server is liable for calculating 
the seeking request to a group of input files, where every file 
is inverted indexes by a file ID and associated to a group of 
access. The fuzzy keyword search pattern recovers the search 
outcome, as per the following rules: 
A. If the user’s searching input appropriately resembles the 

pre-set keyword, the server is expected to return the files 
consists of the relevant keyword. 

B. If there exist format inconsistencies and/or typos in the 
searching files, the server will return the convenient 
probable outcome relied upon pre specified similarity 
semantics. 

                  Figure 3.1: Proposed working model 
 

Before describing the working of the cryptographic 
search process need to understand the used terminology for 
entire process model. 
 
A. KeyGen(s): Takes a security parameter, s, and generates a 
Recipient public/private key pair Rpub, Rpri.              
 
B. EncryptSK(DF): Encrypt data file using shared secret key to 
get encrypted data file. 
 

C. Encrypt (Rpub, W): For a public key Rpub and a word W, 
produces a searchable encryption of W.  
 
D. Trapdoor(Rpri, W): Given Recipient’s private key and a 
word W produces a trapdoor TW. 
 
E. Test(Rpub, S, TW): Given Recipient’s public key, a 
searchable encryption S = Encrypt(Rpub, W'), and a trapdoor 
TW = Trapdoor(Rpri, W), outputs ‘yes’ if W = W' and ‘no’ 
otherwise.  
 
F. Decrypt (Rpri, SK): Decrypt EPUB(SK) using Receiver 
private key PRI to retrieve SK. 
 
G. DecryptSK (DF):Use the retrieved SK as the decryption key 
to decrypt ESK (DF) to get original message.  
 
3.2.1 The Efficient and Privacy Preserving Fuzzy Keyword 
Search Algorithm 

 
A. Takes a security parameter, s, and generates KeyGen(s) a 
shared secrete key SK for symmetric encryption AES-128 and 
Recipient public/private key pair Rpub, Rpri, for asymmetric 
encryption RSA. 
 
B. Collect the Data File DFi to be indexed, Parse and tokenize 
the text, Pre-process the tokens, Remove the stop word, 
Normalize the message keyword Wi.  
 
C. To construct an index for wi with edit space d, the data 
owner first constructs a fuzzy keyword set SWi,d using the 
wildcard based technique. Encrypt the keyword 
Encrypt(Rpub,W) using RSA algorithm, and construct an 
inverted index using the HASH TREE method.  
 
D. Apply Variable Byte Encoding for compressed the inverted 
index.  
 
E. The data owner encrypts the Data File DFi as 
EncryptSK(DF) with a shared secret key using AES-128 bit 
algorithm. 
 
F. The index table {({Tw ∈′ i } w′ i S wi,d , EncryptSK(DF))} wi∈W 
and encrypted data files are outsourced to the cloud server for 
storage. 
 
G. Send Authentication Key to Recipient. 
 
H. To search with (w, k), the authenticate user figure out the 
trapdoor set {T w′}w ∈′ S w,k , Trapdoor(Rpri,W) , where Sw,k is 
also borrowed from the wildcard-based fuzzy set 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 304                                                                                                                                                                     www.ijsart.com 
 

development. He after that delivers {Tw′}w ∈′ Sw,k 

Trapdoor(Rpri, W) to the server. 
 
I. On getting the search appeal {Tw′} w ∈′ S w,k, Test(Rpub, S, 
TW)the server correlates them with the index table using 
Bloom Filter and returns all the desirable encrypted Data File 
file identifiers { EncryptSK(DF)} according to the fuzzy 
keyword definition.  
 
J. The user decrypts the shares key using his/her private key 
Decrypt(Rpri, SK) and get the shared key and then decrypt the 
Data File using secrete key DecryptSK(DF). Returned results 
and retrieves relevant files of interest. 
 
3.3 Concept Study In this section the different techniques and 
concepts are studied by which the proposed searchable 
cryptographic is becomes feasible for implementation.  
 
3.3.1 Edit Distance: There are various methods to 
quantitatively quantify the string similarity. The edit distance 
ed(w1,w2) between two keywords w1 and w2 is the total 
number of operations needed to transform one of them into the 
other. The three primitive operations are 1) Insertion:- 
inserting a single character into a word. 2) Deletion:- deleting 
one character from a word; 3) Substitution:- changing one 
character to another in a word; Given a keyword w, we let 
Skw, d denotes the set of words w′ propitiate ed(w, w′) ≤ d for 
a certain integer d. 
 
3.3.2 Wildcard-based Fuzzy Set Construction: The 
wildcard-based fuzzy set of wi with edit distance d is denoted 
as Swi,d = {S′wi,0, S′wi,1,· · · , S′wi,d}, where S′wi,τ notify the set 
of words w′i with τ wildcards. Note that every wildcard 
represents an edit operation on wi. For instance, the keyword 
AZURE with the pre-set edit distance 1, its wildcard-based 
fuzzy keyword set can be created as SAZURE,1 = {AZURE, 
*AZURE, *ZURE, A*ZURE, A*URE, · · · , AZUR*E, 
AZUR*, AZURE*}. The total number of variants on AZURE 
constructed is only 13 + 1, instead of 13 × 26 + 1 as in the 
exhaustive enumeration approach when the edit distance is set 
to be 1. 

 
The size of Swi,1 will be only 2l + 1 + 1 , for a given 

keyword wi with length l. As compared to (2l + 1) × 26 + 1 
obtained in the straightforward approach. The larger the pre-
set edit distance, the more storage overhead can be reduced: 
with the same setting of the example in the straightforward 
approach, the proposed method can help reduce the amount of 
storage of the index from 30GB to approximately 41MB. In 
case the edit distance is set to be 2 and 3, the size of Swi,2 and 
Swi,3 will be C1 l+1+C1 l · C1 l +2C2 l+2 and C1 l + C3 l + 2C2 l 

+ 2C2 l · C1 l . In other words, the number is only O(l d ) for 
the keyword with length l and edit distance d. 
 
3.3.3 Hybrid Crypto System: The proposed method is a 
method to combine strengths of public-key algorithms with 
symmetric key cryptographic algorithms. The design of the 
proposed hybrid crypto system is based on performing 
encryption and decryption using symmetric key algorithm, but 
uses a public key algorithm to encrypt the symmetric key 
before performing key transfer. In this hybrid crypto system, a 
data block is encrypted using any of the standard symmetric-
key cryptographic algorithms using AES. The symmetric 
encryption key used to encrypt the block is then encrypted 
using a public key crypto algorithm (like RSA) using that 
destination’s public key. The encrypted symmetric key is then 
concatenated with the encrypted data block and the whole data 
block is sent to the destination system. The encrypted data 
block sent to the destination contains the encrypted data and 
the corresponding publicly encrypted symmetric key to 
decrypt that data. The block sent to the destination. The 
destination uses its private key to decrypt the symmetric key 
first and then uses that symmetric key as the decryption key to 
decrypt the received data block. 

 
Table 3.1 Encryption process 

 
Encryption Process 

Input: Data File (DF), Symmetric Key (SK), Destination 
Public Key (PUK)  

 
Output: Encrypted Message. Encrypted Shared Key.  

 
Process:  

 
A. Encrypt data file using shared secret key to get encrypted 
data file ESK (DF). 
 B. Encrypt shared Key using destination public key to get 
encrypted shared key EPUB(SK). 
C. Encrypted data file send to the cloud server.  
D. Encrypted shared key send to receiver. 

 
Table 3.2 Decryption process 

 
Decryption Process 
Input: Encrypted Data File. Encrypted Shared Key.  
 
Output: Original Data File. Shared Secret Key.  
 
Process: A. Decrypt EPUB(SK) using private key PRI to 

retrieve SK (Note: This should be done using the same 
public key algorithm which is used at source) B. Use the 
retrieved SK as decryption key to decrypt ESK (DF) to get 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 305                                                                                                                                                                     www.ijsart.com 
 

original message. (Note: This should be done using the same 
symmetric-key crypto algorithm which is used at the 
source). 

 
3.3.4 Inverted Index: Inverted lists are usually used to index 
underlying documents to retrieve documents according to a set 
of keywords efficiently. Since inverted lists are usually large, 
many compression techniques have been proposed to reduce 
the storage space and disk I/O time. An efficient index 
structure, using the hash tree method is reported here that 
reduces search complexity to O(logw) and after constructing 
index structure applies index compression technique. 

 
Table 3.3 Forward index 

Document ID Keywords 
 7ݓ ,5ݓ ,2ݓ 1
 8ݓ ,6ݓ ,4ݓ ,2ݓ ,1ݓ 2
… …… 
N 6ݓ ,5ݓ ,2ݓ 

 
Table 3.4 Inverted index 

Document ID Keywords 
 2,3,9 1ݓ

W2 1,2,6,7 
… …… 
Wm 1,3,8 

 
A hash tree is a tree of hashes in which the leaves are 

hashes of data blocks in, for instance, a file or set of files. 
Nodes further up in the tree are the hashes of their respective 
children. For example, in the picture hash 0 is the result of 
hashing the result of concatenating hash 0-0 and hash 0-1. 
That is, hash 0 = hash( hash 0-0 + hash 0-1 ) where + denotes 
concatenation. Most hash tree implementations are binary 
(two child nodes under each node) but they can just as well 
use many more child nodes under each node 

 
Figure 3.2 Hash tree 

 
Usually, a cryptographic hash function such as SHA-

2 is used for the hashing. If the hash tree only needs to protect 
against unintentional damage, much less secure checksums 

such as CRCs can be used. In the top of a hash tree there is a 
top hash (or root hash or master hash). Before downloading a 
file on a p2p network, in most cases the top hash is acquired 
from a trusted source, for instance a friend or a web site that is 
known to have good recommendations of files to download. 
When the top hash is available, the hash tree can be received 
from any non-trusted source, like any peer in the p2p network. 
Then, the received hash tree is checked against the trusted top 
hash, and if the hash tree is damaged or fake, another hash tree 
from another source will be tried until the program finds one 
that matches the top hash. The main difference from a hash list 
is that one branch of the hash tree can be downloaded at a time 
and the integrity of each branch can be checked immediately, 
even though the whole tree is not available yet. For example, 
in the picture, the integrity of data block 2 can be verified 
immediately if the tree already contains hash 0-0 and hash 1 
by hashing the data block and iteratively combining the result 
with hash 0-0 and then hash 1 and finally comparing the result 
with the top hash. Similarly, the integrity of data block 3 can 
be verified if the tree already has hash 1-1 and hash 0. This 
can be an advantage since it is efficient to split files up in very 
small data blocks so that only small blocks have to be re-
downloaded if they get damaged. If the hashed file is very big, 
such a hash tree or hash list becomes fairly big. But if it is a 
tree, one small branch can be downloaded quickly, the 
integrity of the branch can be checked, and then the 
downloading of data blocks can start. 

 

 
                Figure 3.3 Structure of invIndex 
 

Inverted file indices are probably the most common 
method used for indexing documents. Figure 3.3 shows the 
structure of an inverted file index. It consists first of a lexicon 
with one entry for every term that appears in any document. 
For each item in the lexicon the inverted file index has an 
inverted file entry (or posting list) that stores a list of pointers 
(also called postings) to all occurrences of the term in the main 
text. Thus to find the documents with a given term need only 
look for the term in the lexicon and then grab its posting list. 
Boolean queries involving more than one term can be 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 306                                                                                                                                                                     www.ijsart.com 
 

answered by taking the intersection (conjunction) or union 
(disjunction) of the corresponding posting lists. Required to 
consider the following important issues in implementing 
inverted file indices A. How to minimize the space taken by 
the posting lists? B. How to access the lexicon efficiently and 
allow for prefix and wildcard queries? C. How to take the 
union and intersection of posting lists efficiently?  

 
3.3.5 Inverted File Compression: The total size of the 
posting lists can be as large as the document data itself. In 
fact, if the granularity of the posting lists is such that each 
pointer points to the exact location of the term in the 
document, then in effect recreate the original documents from 
the lexicon and posting lists (i.e., it contains the same 
information). By compressing the posting lists both reduce the 
total storage required by the index, and at the same time 
potentially reduces access time since fewer disk accesses will 
be required and/or the compressed lists can fit in faster 
memory. This has to be balanced with the fact that any 
compression of the lists is going to require onthefly un-
compression, which might increase access times. The key to 
compression is the observation that each posting list is an 
ascending sequence of integers (assume each document is 
indexed by an integer). The list can therefore be represented 
by an initial position followed by a list of gaps or deltas 
between adjacent locations. For example: Original posting list: 
elephant: [3, 5, 20, 21, 23, 76, 77, 78] 
 
Posting list with deltas: elephant: [3, 2, 15, 1, 2, 53, 1, 1] 

 
The advantage of using the deltas is that they can 

usually be compressed much better than indices themselves 
since their entropy is lower. To implement the compression on 
the deltas only needs some model describing the probabilities 
of the deltas. Based on these probabilities we can use a 
standard Huffman or Arithmetic coding to code the deltas in 
each posting list. Models for the probabilities can be divided 
into global or local models (whether the same probabilities are 
given to all lists or not) and into fixed or dynamic (whether the 
probabilities are fixed independent of the data or whether they 
change based on the data). 

 
VBENCODENUMBER(n) 

 
1 bytes ← {} 
2 while true 
3 do PREPEND(bytes, n mod 128) 
4 if n < 128 
5 then BREAK 
6 n ← n div 128 
7 bytes[LENGTH(bytes)] += 128 
 

8 return bytes 
 
VBENCODE(numbers) 
 
1 bytestream ← {} 
2 for each n ∈numbers 
3 do bytes ← VBENCODENUMBER(n) 
4 bytestream ← EXTEND(bytestream, bytes) 
5 return bytestream 
 
VBDECODE (bytestream) 
 
1 numbers ← {} 
2 n ← 0 
3 for i ← 1 to LENGTH(bytestream) 
4 do if bytestream[i] < 128 
5 then n ← 128× n + bytestream[i] 
6 else n ← 128× n + (bytestream[i] − 128) 
7 APPEND(numbers, n) 
8 n ← 0 
9 return numbers 
 

3.3.6 Bloom Filter: Bloom Filter provides an answer in the 
Constant time and this constant time is the time to hash. The 
method is explained along with implementation details as how 
bloom filter is working on the inverted index to give better 
performance. Bloom filter is a space-efficient probabilistic 
data structure which is used to test whether an element is a 
member of a set. Bloom filter is used to perform membership 
queries. A Bloom Filter can be used to represent a set of 
elements. Bloom Filter makes use of a bit vector and a set of 
hash functions to represent the data set, so as to query a given 
data effectively Bloom filter allow false positive but the space 
saving when the probability of an error is controlled. One can 
first add elements of a set to the structure (Bloom Filter). Later 
on, the structure (Bloom Filter) can be queried for the 
membership of elements. The elements themselves are not 
stored in the Bloom Filter, only their membership may be 
queried by an application. A Bloom Filter consists of an array 
of m-bits, which are all initially set to 0. 

 
0 0 0 0 0 0 0 0 

Figure 3.4 Bloom filter initialized with 0 
 

There must also be K different hash functions each of 
which maps or hashes some set element to one of the m array 
positions with a uniform random distribution. The hash 
functions should be independent, uniformly distributed and 
they should be as fast as possible. There must also be K 
different hash functions each of which maps or hashes some 
set element to one of the m array positions with a uniform 
random distribution. The hash functions should be 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 307                                                                                                                                                                     www.ijsart.com 
 

independent, uniformly distributed and they should be as fast 
as possible. 

 
A. Inserting a word in Bloom Filter 

 
A.1. Let the word to be inserted be “hello”. 

 
A.2. Find the indexes using K different hash functions one by 
one. 

 
A.3. Set 1 at these K indexes. 

 
B. Searching a word in Bloom Filter 

 
B.1. Let the word to be searched is “hello”. 

 
B.2. Find the indexes using K different hash functions. 

 
B.3. If value at all of these indexes is 1 then “hello” is present, 
otherwise “hello” is not present. 

 
Here, for the word “hello” we get the same indexes 

by all K hash functions. At these K indexes, the Bloom Filter 
contains 1indicating that “hello” is present. 

 

 
Figure 3.5 Bloom filter construction 

 
C. Advantages of Bloom Filter 

 
A Bloom Filter does not store the elements, but only 

the membership of elements.  
 
C.1. Space Efficient: The space required to represent a set 
using a bloom filter is sufficiently less compared to other data 
structures like linked lists, hash tables, arrays, etc. The amount 
of space needed to store bloom file is very small as compared 
to the data. [11] 
 
C.2. Time Efficient: The time needed to check whether an 
element is present or not is independent of the number of 

elements present in the set. We just need to find the K indexes 
using K hash functions. 
 
D. False Positive Rate of Bloom Filter False negatives are 
not possible in bloom filters. False positives are possible, but 
their frequencies can be controlled. If m is the number of bits 
in the array, k is the number of hash functions and n is the 
number of elements inserted the False Positive Rate (FPR) can 
be approximated as:  

     FPR= {1-(e-Kn )/m}K 
                           
        Hence false positive scan reduce by increasing size of 

bloom filter or by increasing the number of hash functions. 
However, this may slow the retrieval process. Hence an 
appropriate combination of file size and hash functions are 
required, which vary from application to application. Other 
techniques also exist to reduce the false positive rate of bloom 
filters. Suppose Word1 and Word2 are the two words from the 
documents to be stored in the Bloom Filter. For ease and 
enhanced accepting only 2 words in this graphic illustration. 
H1 and H2 are the two hash functions used to store the cost in 
the bit vector. Now when the word is investigated its hash 
value is also considered using the two hash functions. If the 
value equivalent to both hash values is zero in the bit vector, 
formerly the portion is not created. This is the case of false 
negative, which is the basic idea behind the implementation of 
IIBF. As mentioned earlier main concern is the probability of 
false negative. In sequence to compute the possibility of false 
negative, let us first compute the possibility of false positive. 
Consider that a hash function selects each cluster position with 
equal probability. If m is the number of bits in the pattern, and 
k is the number of hash functions, then the possibility that a 
assertive bit is not set to 1 by a certain hash function during 
the insertion of an element is then (1 – 1/m )K. The probability 
that it is not set to 1 by any of the hash functions is (1 – 1/m 
)K. If n elements are inserted, the probability that a certain bit 
is still 0 is (1 – 1/m )Kn. The probability that it is 1 is 
therefore1 − (1 – 1/m )Kn. Now test membership of an element 
that is not available or present in the group. Each of the k 
pattern location calculated by the hash functions is 1 with a 
probability as above. The probability of all of them is 1, which 
would cause the algorithm to erroneously claim that the 
element is in the set, is often given as (1 – 1/݉)݇n ≈ [1 – 
(݁−݇݊)/m ]ܭ. This is not strictly correct as it assumes 
independence for the probabilities of each bit being set. 
However, assuming it is a close approximation we have the 
probability of false positives decreases as m increases, and 
increases as n increases, where m is the number of bits in the 
array, and n is the number of inserted elements. So the 
probability of false negative would be (1- probability of false 
positive) i.e. (1-[1-1/m]Kn)K . A bit vector is array data 
structure that compactly stores bits. A bit array is effective at 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 308                                                                                                                                                                     www.ijsart.com 
 

exploiting bit-level parallelism in hardware to perform 
operations quickly. A typical bit array stores ݇w bits, where w 
is the number of bits in the unit of storage, such as a byte or 
word and k is some non-negative integer. If w does not divide 
the number of bits to be stored, some space is wasted due to 
internal fragmentation. A bit array is a mapping from some 
domain (almost always a range of integers) to values in the set 
0, 1. The values can be interpreted as absent/present, 
valid/invalid, etc. The point is that there are only two possible 
values, so they can be stored in one bit. The array can be 
viewed as a subset of the domain (e.g. 0, 1, 2 . . .,݊1), where a 
1 bit indicates a number in the set and a 0 bit a number not in 
the set. 
 

IV. RESULTS ANALYSIS 
 

4.1. Precision 
     

In any data retrieval or search applications the 
precision is a fraction of search results which is most relevant 
to the input query. The provided precision of the proposed 
cryptographic search process is given using figure 4.1. This 
can be evaluated using the user feedback basis and also can be 
evaluated by the following formula. 

 
Precision=relevant document ∩ retrieved documents 
                                         retrieved documents 
 

 
Figure 4.1 Precision rate 

 
The obtained precision of the proposed system is 

given using figure 4.1 and the given table 4.1. In the given 
diagram the X axis shows the numbers of files are stored in 
the server system during making the search request for file and 
the Y axis contains the obtained precision rate according to the 
search outcomes. According to the given results the search 
accuracy of the proposed cryptographic system is improved as 
the amount of data in the database is increases. Therefore the 
proposed cryptographic cloud data model is adaptable and 
efficient for data hosting and secure data search and retrieval 
process. 

 

Table 4.1 Precision rate 
Amount of File in 
Storage 

Precision Rate 

10 0.74 
20 0.79 
30 0.81 
50 0.84 
100 0.85 
150 0.88 
200 0.91 

 
4.2 Recall 

 
In data retrieval application, or the search application 

recall values are measured for accuracy measurement in terms 
of relevant document retrieved or relevant data obtained 
according to the input user query. That defines the degree of 
accurate document extraction during the search process. This 
can be evaluated using the following formula 

 
        Recall=relevant document ∩ retrieved documents 
                                        relevant document documents 
 

 
Figure 4.2 Recall rate 

 
The recall rate of the proposed implemented system 

is demonstrated using the figure 4.2 and the table 4.2. In this 
diagram the X axis contains the amount of files stored in the 
cloud server and the Y axis shows the corresponding recall 
rate of the system. According to the obtained results the 
proposed technique improves the cryptographic search 
accuracy as the amount of data is increases over the data 
repository. Therefore the model is adoptable and accurate for 
use with the real world system for cryptographic data search 
processes. 

 
Table 4.2 Recall rate 

Amount of Data in 
Database 

Recall Rate 

10 0.69 
20 0.72 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 309                                                                                                                                                                     www.ijsart.com 
 

30 0.74 
50 0.78 
100 0.81 
150 0.84 
200 0.85 

 
4.3 F-measures 

 
The f-measures of the system demonstrate the 

fluctuation in the computed performance in terms of precision 
and recall rates. The f-measures of the system can be 
approximated using the following formula 

 
F - Measures =2. (Precision * recall)/ (precision + recall) 
  

 
Figure 4.3 F-measures 

 
The given figure 4.3 and the table 4.3 show the f-

measures of the proposed cryptographic secure search process. 
That shows the consistency of the resultant from the system. 
The given figure contains the different amount of data size in 
the search repository and the corresponding search consistency 
is given in terms of f-measures in Y axis. According to the 
given results the performance of the search system is 
consistent and improving in the similar ratio as the amount of 
data to being search is increases. Therefore the proposed 
model is adaptable and efficient in terms of data retrieval 
relevancy. 

 
Table 4.3 F-measures 

Amount of Data in 
Database 

F-measures 

10 0.7141 
20 0.7417 
30 0.7734 
50 0.8088 
100 0.8295 
150 0.8595 
200 0.8789 

 

4.6 Memory Usages 
 

The amount of main memory required to successfully 
process the user request by the implemented system is 
considered here as the memory consumption of the system. 
The figure 5.4 and table 5.4 shows the memory consumption 
of the implemented system. According to the given outcomes 
the X axis contains the number of files in the search database 
and the Y axis contains the corresponding memory 
consumption of the system. According to the obtained results 
the memory consumption of the proposed system is increases 
as the amount of data is increases for processing. Therefore 
the significant amount of data search needs a significant 
amount of memory space to process accurately user requests. 

 
Figure 4.4 Memory usages 

                                
Table 4.4 Memory usages 

Amount of Data in 
Database 

Memory Usages 

 10 25719 
20 26374 
30 27636 
50 28873 
100 29910 
150 30018 
200 31331 

 
4.5 Response Time 

 
The amount of time required to process the user 

query request during searching of the encrypted files from the 
data base is termed here as the time consumption or the time 
complexity. The estimated response time of the system is 
demonstrated using the table 5.5 and the figure 5.5. In this 
diagram the X axis include the amount of files in the database 
for search and the Y axis shows the amount of time required 
for processing the user requests. The results show the amount 
of time for generating the response is increased as the amount 
of data during the search is increasing. The estimated reported 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 310                                                                                                                                                                     www.ijsart.com 
 

here is given in terms of milliseconds and adoptable according 
to the preserving privacy during the search process and data 
recovery. 

 

 
Figure 4.5 Response time 

 
Table 4.5 Response time 

Amount of Data in 
Database 

Response Time 

10 28.51 

20 40.28 

30 58.67 

50 87.5 

100 104.46 

150 135.74 

200 178.36 
 
  6. Performance of InvIndex 

 
Figure 4.6 Size of index, uncompressed (64-bit integer) and 

compressed (VBE). 
 

 

 
Figure 4.7 Search engine querying speed: compressed versus 

uncompressed 
 

Data Set  Index Size 
 

Uncompressed 
Compressed 
(VBE) 

Shakespe
are 

10.5 MB 2.7 MB (26%) 

TREC45 2333.1MB 533.0 MB 
(22.85%) 

GOV2 328.3 GB 
62.1GB 
(19%) 

Figure 4.8 Index Comparison Uncompressed Vs Compressed 
 

 
Figure 4.9 Simple9 Vs V-Byte 

 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 311                                                                                                                                                                     www.ijsart.com 
 

 
Figure 4.10 InvIndex Vs invIndex+ BF 

 
4.7 Performance of Hybrid Encryption. 
 

Table 4.6 Encryption technique comparison 
FACT

ORS AES 
RS

A 
HYBR

ID 
NATURE 

Type of 
algorithm 

Symmetr
ic 

As
ymme
tric Hybrid 

Data 
size Big 

Sm
all Big 

Block 
size 

128,192, 
256 bits 

Mi
nimu
m 
512 
bits 

128 
bits 

Power 
consumpti
on Low 

Hig
h Low 

Rounds 10,12,14 1 

AES-
14, RSA-
1 

Memor
y space Less 

Mo
re More 

SECURITY 
Confide

ntiality Moderate 
Hig

h High 
Integrit

y None 
Hig

h High 
Authent

ication None 
Mo

derate High 
Non- 

repudiatio
n None 

No
ne High 

Digital 
signatures None 

Pos
sible 

Availa
ble 

Hash 
function None 

Pos
sible 

Availa
ble 

               TIME 
Encrypt

ion/Decry
ption Fast 

Slo
w Fast 

Speed 
of 
computati
on Fast 

Slo
w Fast 

Softwar
e 
Implement
ation Fast 

Slo
w Fast 

Hardwa
re 
Implement
ation Fast 

Slo
w Fast 

                                   KEY 
Key 

generation Yes Yes Yes 
Key 

storage No Yes Yes 
Multipl

e keys No Yes Yes 
Secret 

key Yes Yes Yes 
Public 

key No Yes Yes 
Shared 

key Yes No No 
Distribu

tion public 
key No Yes Yes 

Distribu
tion of 
secret key Yes No No 

Pair 
keys No Yes Yes 

Inverse 
keys Yes No Yes 

  
 

4.8. Performance of Bloom Filter 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 312                                                                                                                                                                     www.ijsart.com 
 

 
Figure 4.11 Time (microseconds) for computing the bitwise 

and of bloom filters for different size 
 

V. CONCLUSION AND FUTURE WORK 
 

5.1 Conclusion 
 

The need of new generation computation and storage 
is fulfilled using the cloud servers. The cloud servers are 
providing the scalable techniques for extending their 
computational ability and storage capabilities. But the storage 
of the data on the third party server is suspected to the end 
user and the data owners. The users are always worried about 
the privacy and sensitivity of the stored data on the cloud 
servers. Therefore the cloud service providers are providing 
the cryptographic cloud storage for improving the security of 
data in third party servers. 

 
Due to the storage placed on the cryptographic cloud 

then the normal search or data retrieval techniques are not 
suitable for relevant data search. Therefore the searchable 
encryption schemes are developed for making a search on the 
cryptographic data storage. In this presented work a detailed 
investigation about the cryptographic storage and searchable 
encryption techniques are performed. Additionally, using the 
different available techniques of searchable cryptography a 
new technique is proposed. That incorporates the technique of 
fuzzy keyword search for improving the search relevancy. 
Additionally a hybrid cryptographic process is also involved 
to secure the data during storage. But the search efficiency is 
also a major concern in data retrieval processes. Therefore the 
inverted index process is used with the hash tree function to 
reduce the time consumption and storage overhead for the 
developed indexing technique. The storage overhead is 
reduced due to compression of the inverted index to store the 
index information. 

 
The implementation of the proposed technique is 

performed using the JAVA technology and for demonstrating 
the entire functional aspects the proposed system is 

demonstrated using the public cloud namely Open Shift. After 
implementation of the system the performance of the system is 
evaluated. The evaluated performance of the proposed 
cryptographic search process is summarized using the given 
table 5.1 

 
Table 5.1: Performance of cryptographic search process 

S. 
No. 

Parameters Remark 

1 Precision Improving the search precision 
rate as the amount 

of data is increases in storage 
 

2 Recall Recall rate shows the 
relevancy of the document during 
search which is also enhanced as 
the data increases 

3 F-measures The f-measures shows the 
consistency of search outcomes 
which is stable and not 
fluctuating with increasing size 
of data in storage 

4 Memory 
usage 

The memory consumption of 
the system is increases as the 
amount of data in search space is 
increases 

5 Response 
time 

The time consumption of 
system is depends on the amount 
of data in storage space 

 
According to the obtained performance of the system 

the proposed model is working efficiently and can be used 
with various cryptographic search processes. Therefore that is 
adoptable, secure and efficient for different data retrieval 
systems. 

 
5.2 Future work 

 
In this presented work the issues of the searchable 

encryption techniques are investigated and a new process 
model is developed that are used to keep in track the privacy 
and security of the keyword based search process. In addition 
of that the approach is also promising for reducing the search 
time, storage overhead and search relevancy. Therefore the 
key aim of developing the enhanced search outcomes in 
cryptographic cloud is developed and successfully 
implemented. That can be further extendable with the 
authentication and access control during data retrieval. 
Therefore, in the near future the proposed data model is 
extended for integrating the access control and authentication 
for full proof security over the cloud storage. 

 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 313                                                                                                                                                                     www.ijsart.com 
 

REFERENCES 
 
[1] Richard Chow, Philippe Golle, Markus Jakobsson, 

Ryusuke Masuoka, Jesus Molina, Elaine Shi, Jessica 
Staddon, “Controlling Data in the Cloud:Outsourcing 
Computation without Outsourcing Control”, CCSW’09, 
November 13, 2009, Chicago, Illinois, USA.Copyright 
2009 ACM. 

 
[2] Christoph Bosch, Pieter Hartel, Willem Jonker, and 

Andreas Perer, “A Survey of Provably Secure 
Searchable Encryption”, ACM Computing Surveys, Vol. 
47, No. 2, Article 18, Publication date: August 2014. 

 
[3] Michael Armbrust, Armando Fox, Rean Griffith, 

Anthony D. Joseph, Randy Katz,Andy Konwinski, 
Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, 
and Matei Zaharia, “Above the Clouds: A Berkeley 
View of Cloud Computing”, UC Berkeley Reliable 
Adaptive Distributed Systems Laboratory, 
http://radlab.cs.berkeley.edu/, February 10, 2009. 

 
[4] Alexa Huth and James Cebula, “The Basics of Cloud 

Computing”, © 2011 Carnegie Mellon University, 
Produced for US-CERT. 

 
[5] Nariman Mirzaei, Cloud Computing, Fall 

2008,Community Grids Lab, Indiana University 
Pervasive Technology Institute. 

 
[6] Mike Ricciuti, “Stallman: Cloud computing is 

'stupidity'”, http://news.cnet.com/8301-1001_3-
10054253-92.html. 

 
[7] Cloud Storage: Non profit Technology Collaboration, 

Last Updated: 3/05/2013, http: //www.baylor.edu/ 
business/mis/nonprofits /doc.php/197132.pdf. 

 
[8] [8] Seny Kamara, Kristin Lauter, “Cryptographic Cloud 

Storage”, Microsoft Research Cryptographic Group, 
http://research.microsoft.com/en-us/people/klauter/ 
cryptostoragerlcps.pdf. 

 
[9] Rajnish Noonia, “.Net Cryptography (Encryption / 

Decryption)”, 
http://www.pixytech.com/rajnish/2013/04/net-
cryptography-encryption-decryption/ 

 
[10] Dan Boneh, Giovanni Di Crescenzo, “Public Key 

Encryption with keyword Search”, Supported by NSF 
and the Packard foundation. 

 

[11] Majid Bakhtiari, Majid Nateghizad, Anazida Zainal, 
“Secure Search Over Encrypted Data in Cloud 
Computing”, International Conference on Advanced 
Computer Science Applications and Technologies, 2013 
IEEE. 

 
[12] M.M. Tajiki, M.A.Akhaee, “Secure and privacy 

preserving keyword searching cryptography”, 2014 11th 
International ISC Conference on Information Security 
and Cryptology (ISCISC),IEEE. 

 
[13] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and 

Wenjing Lou, “Fuzzy Keyword Search over Encrypted 
Data in Cloud Computing”, 2010 Proceedings 
IEEE,INFOCOM. 

 
[14] Qiuxiang Dong, Zhi Guan, Liang Wu, and Zhong Chen, 

“Fuzzy Keyword Search over Encrypted Data in the 
Public Key Setting”, WAIM 2013, LNCS 7923, pp. 729–
740, 2013. Springer-Verlag Berlin Heidelberg 2013. 

 
[15] Dr. narendra shekokar, kunjita sampat, chandni 

chandawalla, jahnavi shah, “implementation of fuzzy 
keyword search over encrypted data in cloud 
computing”, international conference on advance 
computing technologies and applications 2015. 

 
[16] Adnan Abdul-Aziz Gutub, Farhan Abdul-Aziz Khan, 

“Hybrid Crypto Hardware Utilizing Symmetric-Key & 
Public-Key Cryptosystems”, 2012 International 
Conference on Advanced Computer Science 
Applications and Technologies. 

 
[17] Saibal K. Pal, Puneet Sardana and Ankita Sardana, 

“Efficient Search on Encrypted Data Using Bloom 
Filter”, 978-93-80544-12-0/14/$31.00 c 2014 IEEE. 

 
[18] Abha Sachdev, Mohit Bhansali, “Enhancing Cloud 

Computing Security using AES Algorithm”, 
International Journal of Computer Applications (0975 – 
8887) Volume 67– No.9, April 2013. 

 
[19] Razvan Rughinis, “Enhancing Performance of 

Searchable Encryption in Cloud Computing”, 
CODASPY’13, February 18–20, 2013, San Antonio, 
Texas, USA. ACM 978-1-4503-1890-7/13/02. 

 
[20] Qin Liu, Guojun Wang, Jie Wu, “Secure and privacy 

preserving keyword searching for cloud storage 
services”, Journal of Network and Computer 
Applications, 2011 Elsevier Ltd. All rights reserved. 

 



IJSART - Volume 2 Issue 11 –NOVEMBER 2016                                                                                ISSN [ONLINE]: 2395-1052 
 

Page | 314                                                                                                                                                                     www.ijsart.com 
 

[21] Jian Wan, Shengyi Pan, “Performance Evaluation of 
Compressed Inverted Index in Lucene”, 2009 
International Conference on Research Challenges in 
Computer Science, 978-0-7695-3927-0/09 $26.00 © 
2009 IEEE. 


