
IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 212 www.ijsart.com

A Study and Survey on Reconfigurable Computing
Architecture using FPGAs

Singaravelan N1, Ramachandran R2

1, 2 Department of Electronics and Communication Engineering
1, 2 RMK College of Engineering and technology, Puduvoyal, Tamilnadu

Abstract- Reconfigurable computing has been driven largely
by the development of commodity field-programmable gate
arrays (FPGAs). Standard FPGAs are somewhat of a mixed
blessing for this field. In this survey we give a brief overview
of programming logics and we present configurable logic
block (CLB) and Look Up Table (LUT) as logic elements. Also
we presented the definition of fine and coarse-grain
architectures and present some commercial examples. This
survey is also introduced the reconfigurable computing
models like static and dynamic, single and multi-context and
partial reconfiguration architectures. Finally run-time
reconfigurable computing and the coupling of reconfigurable
processing unit (RUP) delineated.

Keywords- Reconfigurable computing, ASIC, Field Programmable,
LUT, CLB, FPGA, reconfigurable systems, Run-time
reconfiguration, VHDL, RUT

I. INTRODUCTION

One of the most important research areas in computer
hardware is reconfigurable computing and it is becoming
gradually more attractive for many useful applications.
Reconfiguration is the process of changing the structure of a
reconfigurable device at star-uptime respectively at run-time
[6] [11]. Reconfigurable computing involves the use of
reconfigurable devices, such as Field Programmable Gate
Arrays (FPGAs), for computing purposes. FPGAs are
programmable microprocessors which end-user can configure
them without any fabrication facilities. In most applications,
FPGAs have all of Application Specific Integration Circuits
(ASICs) benefits without more construction costs [1].

This paper is organized as follows: in Section II, we
first give a brief overview of programmable logics,
implementation spectrum and the differences. Section III
presents programmable logic elements such as logic block
based on look up table (LUT) and configurable logic block
(CLB). In Section IV we define the fine-grain and coarse-
grain architectures. Section V presents reconfigurable
computing hardware devices such as SRAM, anti-fuse
technology, EPROM, EEPROM and FLASH. In Section VI,
FPGA structures and routing resources described and we
analyze the famous Programming technology properties in

summary. We present the overall definition of Run-time
configuration in Section VIII. Finally, we draw the overall
conclusions in section IX.

II. IMPLEMENTATION SPECTRUM

In the area of computer architecture, designers are
faced with the trade-off between flexibility and performance
[2]. The architectural choices span a wide spectrum, with
general-purpose processors and application-specific integrated
circuits (ASICs) at opposite ends. Fig. 1 presents a schematic
overview of the speed/flexibility trade-off. The application
specific integration circuit (ASIC) stands at the end of
spectrum. It is designed for one specific task therefore there is
no need for an instruction set. ASICs are dedicated hardware
devices that are tuned to a very small number of applications
or even to just one task. For a given task, ASICs achieve a
higher performance, require less silicon area, and are less
power consuming than instruction-level programmable
processors. However, they lack in flexibility [2]. Thus ASICs
gives high performance at cost of inflexibility. The general-
purpose processor (GPP) can be found at another end of
spectrum. A GPP is very flexible, as it can execute any
function. Each function can be assembled by various
instructions supported by the GPP. However, fetching
instructions from memory and decoding them costs (a lot of)
time Whereas GPP are very slow [3].

The best solution is to use programmable circuits
such as PLD, CPLD and FPGAs. There are some reasons that
encourage using programmable circuits. First, the
implementations of complex digital functions are simple,
second, test and analysis of circuits are very easy and fast.
Third, inexpensive fabrications for few productions and the
most important reason are the accordance with functional
requirements and the ability to change the design over again
by user.

Fig.1. Speed/Flexibility comparison

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 213 www.ijsart.com

Fig.2. An abstract view of an FPGA

A. PLD, CPLDs and FPGAs Structures

Programmable logic devices (PLD) are integrated

circuits with internal logic gates that are connected together
through fuses. A process that is called programming defines
the functionality of the chip.ROMs (Read Only Memories),
PALs (Programmable array logic) and PLAs (Programmable
Logic Arrays) are examples of PLDs. The main difference
between these devices is the position of the fuses and the fixed
connection between gates. Inside each PLD is a set of fully
connected macrocells. These macrocells are typically
comprised of some amount of combinatorial logic (AND and
OR gates, for example) and a flip-flop. A PLA consists of two
levels of logic gates: a programmable “wired” AND-plane
followed by a programmable “wired” OR-plane. A PLA is
structured. So that any of its inputs (or their complements) can
be AND’ed together in the AND-plane [4].For large logic
circuits, complex programmable logic devices (CPLD) can be
used. A CPLD consists of a set interconnection network. The
connection between the input/output blocks and the macro
cells and those between macro cells and macro cells can be
made through the programmable interconnection network [9]
[11]. In practical view point, there are two differences between
FPGA and CPLD;first, the FPGAs with thousand gate
capacity have more facilities instead of CPLDs to design more
complex and huge digital systems. Second, FPGAs use more
programmable switches for FPGA’s interconnection blocks
that have more delay. Therefore FPGAs have more delays
instead of CPLDs and PALs. Also FPGAs are implementable
by using computer aided design (CAD) tools such as Very
Log hardware design language (VHDL).

B. Field Programmable Gate Arrays

An FPGA is a programmable device consisting, like

the CPLDs, of three main parts. A set of programmable logic
cells also called logic blocks or configurable logic blocks, a

programmable interconnection network and a set of input and
output cells around the device.A function to be implemented
in FPGA is partitioned in modules, each of which can be
implemented in a logic block. The logic blocks are then
connected together using the programmable interconnection.

Fig. 3. Implementation of f=ab in a 2-input MUX

The user in the field can program all three basic

components of an FPGA. FPGAs can be programmed once or
several times depending on the technology used [11].Also
FPGA is a general structure that allows very high logic
capacity. Whereas CPLDs feature logic resources with a wide
number of inputs (AND planes), FPGAs offer more narrow
logic resources. FPGAs also offer a higher ratio of flip-flops to
logic resources than do CPLDs. FPGAs comprise an array of
uncommitted circuit elements, called logic blocks, and
interconnect resources, but FPGA configuration is performed
through programming by the end user. Fig. 3 illustrates the
internal workings of a field-programmable gate array, which is
made up of logic blocks embedded in a general routing
structure. The logic blocks contain processing elements for
performing simple combinational logic, as well as flip-flops
for implementing sequential logic. Because the logic units are
often just simple memories, any Boolean combinational
function of perhaps five or six inputs can be implemented in
each logic block. The general routing structure allows
arbitrary wiring, so the logical elements can be connected in
the desired manner. Because of this generality and flexibility,
an FPGA can implement very complex circuits [5].

III. PROGRAMMABLE LOGIC ELEMENTS

Programmable logic cells used to implement Boolean
equations with more inputs. The complication of each
logiccell is depended on the number of functions, which could
be implemented on it. The structure of programmable logic
cell is based on multiplexer or look up table (LUT).Logic cells
based on multiplexer(2n-to-1) multiplexer (MUX) is a selector
circuit with 2n inputs and one output. Its function is to allow
only one input line to be fed at the output. The line to be fed at
the output can be selected using some selector inputs. To
select one of the 2n possible inputs, n selectors lines are
required (Fig. 3). An MUX can be used to implement a given
function. A complex function can be implemented in many
multiplexers connected together. The function is first broken
down into small pieces. Each piece is then implemented on a

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 214 www.ijsart.com

multiplexer [11]. The multiplexers will then be connected to
build the given function.The devices manufactured by Actel
are based on a structure similar to traditional gate arrays and
are based on multiplexers. Fig. 4 illustrates the logic block in
the Act 3 and shows that it comprises an AND and OR gate
that are connected to a multiplexer based circuit block.

A. Logic block based on LUT

A look-up table (LUT) is a group of memory cells,
which contain all the possible results of a given function for a
given set of input values.The LUT can compute any function
of n inputs by simply programming the lookup table with the
truth table of the function we want to implement [5]. As
shown in the Fig. 5 if we wanted to implement F=AB+C
function with our 3-input LUT (often referred to as a 3-LUT),

Fig. 4. The Actel basic computing blocks uses multiplexers as

function generators

we would assign values to the lookup table memory such that
the pattern of select bits chooses the correct row’s "answer".
The output values will be located in SRAM memory bits.
Therefore complicated functions with a large number of inputs
can be implemented by combining several lookup tables
together.As Fig. 6 shown, in some applications we need to
store the output bit of LUT, the D-Flip flop will attach at the
end. A D flip-flop (DFF) is included to provide state-holding
elements. This DFF can be bypassed when not needed, by
selecting the appropriate multiplexer input behind the flip-flop
[6].

B. Configurable logic block (CLB)

The basic computing block in the Xilinx FPGAs consists of an
LUT with variable number of inputs, a set of multiplexers,
arithmetic logic and a storage element (Fig. 7).The XC4000
features a logic block (called a Configurable Logic Block
(CLB) by Xilinx) that is based onlook-up table (LUT) and has
2000 to 15000 gates.The Fig. 7 shows CLB design in
traditional FPGA. The typical FPGA has a logic block with
one or more 4-input LUT(s), optional D flip-flops (DFF), and
some form of fast carry logic. The flip-flop can be used for
pipelining, registers, state holding functions for finite state

machines, or any other situation where clocking is required
[6].The XC4000 interconnect is arranged in horizontal and
vertical channels. Each channel contains some number of short
wire segments that span a single CLB (the number of
segments in each channel depends on the specific part
number), longer segments that span two CLBs and very long
segments that span the entire length or width of the chip
[4].Except for the Virtex 5, all LUTs in Xilinx devices have
four inputs and one output. In the Virtex 5 each LUT has six

Fig. 5. a 3-LUT schematic

Fig. 6. D flip-flop with optional bypass

inputs and two outputs. The LUT can be configured either as a
6-input LUT, in which case only one output can be used, or as
two 5-input LUTs, in which case each of the two outputs is
used as output of a 5-input LUT [11].

IV. GRANULARITY

The logic block is defined by its internal structure
and granularity. The structure defines the different kinds of
logic that can be implemented in the block, while the
granularity defines the maximum word length of the
implemented functions. The functionality of the logic block is
obtained by controlling the connectivity of some basic logic
gates or by using LUTs and has a direct impact on the routing
resources. As the functional capability increases, the amount
of logic that can be packed into it increases.A collection of
CLBs, known as logic cluster, is described with the following
four parameters [8]; the size of (number of inputs to) a LUT,
the number of CLBs in a cluster, the number of inputs to the
cluster for use as inputs by the LUTs and the number of clock
inputs to a cluster (for use by the registers).

Thus, the size and complexity of the basic computing
blocks is referred to as the block granularity. All the
reconfigurable platforms based on their granularity are
distinguished into two groups, the fine-grain and coarse-grain

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 215 www.ijsart.com

systems [2] [8].A number of reconfigurable systems use a
granularity of logic block that we categorize as medium-
grained.Medium-grained logic blocks may be used to
implement datapath circuits of varying bit widths, similar to
the fine-grained structures. However, with the ability to
perform more complex operations of a greater number of
inputs, this type of structure can be used efficiently to
implement a wider variety of operations [6].

A. Fine-grain & Coarse-grain

In fine-grained architectures, the basic programmed
building block consists of a combinatorial network and a few
flip-flops. A fine-grain array has many configuration points to
perform very small computations, and thus requires more data
bits during configuration.The fine-grain programmability is
more amenable to control functions, while the coarser grain
blocks with arithmetic capability are more useful for data path
operations. This type of logic block is useful for an encryption
and image processing applications. The GRAP [Hauser and
Wawrzynek 1997] and Chimaera [Hauck et al. 1997] are two

Fig. 7. a basic logic block of Xilinx FPGAs [11].

Platforms that are based on Fine-Grain Reconfigurable
Devices. The CHESS [Marshall et al. 1999], RaPiD
architecture [Ebeling et al. 1996] and The RAW project
[Moritz et al. 1998] are some example of coarse-grained
reconfigurable platform [6].

V. RECONFIGURABLE COMPUTING HARDWARE
DEVICE ARCHITECTURE

Programming points, which may be based on anti-

fuse, Flash, or SRAM technology, controls the logic and
routing elements in reconfigurable computing hardware. In
this section we discuss these technologies and specify the
similarities and contrasts.

A. SRAM Technology:

The major advantage of this technology is that
FPGAs can be programmed (configured) indefinitely. We just
need to change the value into the SRAM cells to realize a new

connection or a new function. Moreover, the device can be
done in-circuit very quickly and allow the reconfiguration to
be done on the fly [6] [11].

B. Anti-fuse technology

Anti-fuse is a programmable chip technology that
creates permanent, conductive paths between transistors. In
contrast to "blowing fuses" in the fusible link method, which
opens a circuit by breaking apart a conductive path, the anti-
fuse method closes the circuit by "growing" a conductive via.
Anti-fuses are suitable for FPGAs because they can be built
using modified CMOS technology [4].

C. EPROM, EEPROM, and FLASH

This class of non-volatile programming technology
uses the same techniques as EPROM, EEPROM and Flash
memory technologies. An EEPROM or EPROM transistor is
used as a programmable switch for CPLDs by placing the
transistor between two wires in a way that facilitates
implementation of wired-AND functions.

Fig. 8. a programming bit for SRAM-based FPGAs

Table 1- Programming technology properties summary

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 216 www.ijsart.com

Usually the architecture also uses some general
routing resources to realize longer connections [8].Like in
symmetrical arrays, the macro cells are arranged on a two-
dimensional array structure such that an entry in the array
correspond to the coordinate of a given macro cell. The
difference between the symmetrical array and the sea-of-gate
is that there is no space left aside between the macro cells for
routing. In hierarchical based FPGAs, macro cells are
hierarchically placed on the device. Elements with the lowest
granularity are at the lowest level hierarchy. They are grouped
to form the elements of the next level [10] [11].

Most current FPGAs are of the two-dimensional
variety. This allows for a great deal of flexibility, as any signal
can be routed on a nearly arbitrary path. However, providing
this level of routing, flexibility requires a great deal of routing
area. It also complicates the placement and routing software,
as the software must consider a very large number of
possibilities. One solution is to use a more one-dimensional
style of architecture. Here placement is restricted along one
axis. With a more limited set of choices, the placement can be
performed much more quickly and Routing is also simplified.
One drawback of one-dimensional routing is that if there are
not enough routing resources for a specific area of a mapped
circuit, and then the routing of the whole circuit becomes
actually more difficult than on a two-dimensional array that
provides more alternatives [6] [8] [13].

VI. RECONFIGURATION MODELS

This section presents recon figuration models that are
as follows: static and dynamic reconfiguration, single context
and multiple context architectures that will be described as
follows:

Fig. 11.a) Principle of static reconfiguration b) Principle of

dynamic reconfiguration.

A. Static and dynamic reconfiguration

Static reconfiguration (often referred as compile time
reconfiguration) is the simplest and most common approach
for implementing applications with reconfigurable logic. Static
reconfiguration involves hardware changes at a relatively slow
rate. It is a static implementation strategy where each
application consists of one configuration. The distinctive

feature of this configuration is that it consists of a single
system-wide configuration. Prior to commencing an operation,
the reconfigurable resources are loaded with their respective
configurations. Once operation commences, the reconfigurable
resources will remain in this configuration throughout the
operation of the application. Thus hardware resources remain
static for the life of the design whereas static reconfiguration
allocates logic for the duration of an application, dynamic
reconfiguration (often referred to as run time reconfiguration)
uses a dynamic allocation scheme that re-allocates hardware at
run-time. This is an advanced technique that some people
regard as a flexible realization of the time/space trade-off. It
can increase system performance by using highly optimized
circuits that are loaded and unloaded dynamically during the
operation of the system as depicted in Fig. 11-b.In this way
system flexibility is maintained and functional density is
increased [14] [15].The dynamic reconfiguration has two main
design problems. The first is to divide the algorithm into time-
exclusive segments that do not need to run concurrently. The
second problem is to co-ordinate the behavior between
different configurations, i.e. the management of transmission
of intermediate results from one configuration to the next [16].

B. Single context and Multi-context architecture

Although single context architectures can typically be
reconfigured only statically, a run-time reconfiguration onto
single context FPGA can also be implemented. In this type of
FPGA, configuration information is loaded into the
programmable array through a serial shift chain. Many
commercial FPGAs are of this style, including the Xilinx 4000
series [7], the Altera Flex10K series, and Lucent’s Orca series.

Fig. 12. single context dynamically reconfigurable architecture

Fig. 13- multi-context dynamically reconfigurable architecture

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 217 www.ijsart.com

This type of FPGA is therefore more suited for
applications that can benefit from reconfigurable computing
without run-time reconfiguration. A single context FPGA is
depicted in Fig. 12. A multi-context architecture includes
multiple memory bits for each programming bit location.
These memory bits can be thought of as multiple planes of
configuration information [3, 15]. Only one plane of
configuration information can be active at a given moment,
but the architecture can quickly switch between different
planes, or contexts, of already-programmed configurations.
Multi-context devices have two main benefits over single-
context devices. First, they permit background loading of
configuration data during circuit operation, overlapping
computation with reconfiguration. Second, they can switch
between stored configurations quickly-some in a single clock
cycle-dramatically reducing reconfiguration overhead if the
next configuration is present in one of the alternate contexts
[14] [17] [18].

C. Partial reconfiguration architecture

In some cases, configurations do not occupy the full
reconfigurable hardware, or only a part of a configuration
requires modification. In both of these situations a partial
reconfiguration of the reconfigurable resources is desired,
rather than the full reconfiguration supported by the serial
architectures mentioned above. When configurations do not
require the entire area available within the array, a number of
different configurations may be loaded into otherwise unused
areas of the hardware (fig. 14). Partially runtime
reconfigurable architectures can allow for complete
reconfiguration flexibility such as the Xilinx 6200 [18], or
may require a full column of configuration information to be
reconfigured at once, as in the Xilinx Virtex FPGA [19]. For
example, in a filtering operation in signal processing, a set of
constant values that change slowly over time may be
reinitialized to a new value, yet the overall computation in the
circuit remains static [6].

VII. RUN-TIME RECONFIGURATION

Run-time reconfiguration is defined as the ability to modify or
change the functional configuration of the device during
operation, through either hardware or software changes. This
concept is known as runtime reconfiguration (RTR). Run-time
reconfiguration is based upon the concept of virtual hardware,
which is similar to virtual memory. Here, the physical
hardware is much smaller than the sum of the resources
required by each of the configurations. Therefore, instead of
reducing the number of configurations that are mapped, we
instead swap them in and out of the actual hardware as they

are needed [6]. The primary advantages of run-time
reconfiguration in devices are reduced power consumption,

Fig. 14- Partial dynamically reconfigurable architecture

hardware reuse, obsolescence avoidance, and flexibility. The
costs of run-time reconfigurability are in design and
implementation complexity-both in architecture definition and
in coding and test.

VIII. CONCLUSION

Research in architecture of computer systems has
always been a central preoccupation of the computer science
and computer engineering communities. This survey presented
the basic technology that serves as the foundation of
reconfigurable computing also we introduced the basic idea of
lookup table computation, explained the need for dedicated
computational blocks, and described common interconnection
strategies. Finally, we tied it all together with brief overviews
of two popular commercial architectures. Understanding the
concept presented here will therefore help to understand better
and faster the changes that will be made on the devices in the
future.

REFERENCES

[1] I. Kuon and J. Rose, "Measuring the Gap Between

FPGAs and ASICs", IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems
(TCAD), Vol. 26, No. 2, p.p 203-215, Feb. 2007.

[2] M. Platzner. “Reconfigurable Computer Architectures,”

Stanford University, 1998.

[3] Thijs van As and S. Krijgsman, “Reconfigurable

Architectures: A survey of design and Implementation
Methods,” Faculty of Electrical Engineering,
Mathematics & Computer Science Delft University of
Technology.

[4] S. Brown and Jonathan Rose, “Architecture of FPGAs

and CPLDs: A Tutorial”, IEEE Design & Test, Volume
13, Issue 2, Page 42-57, 1996

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 218 www.ijsart.com

[5] S. Hauck andAndr´eDeHon “Reconfigurable computing:
the theory and Practice of FPGA-based Computation,”

[6] K. Compton and S. Hauck. Reconfigurable Computing:

A Survey of Systems and Software. ACM Computing
Surveys, 34(2):171– 210, June 2002.

[7] “Xilinx,” http://www.xilinx.com.

[8] S. Vassiliadis and D. Soudris (eds.), “Fine- and Coarse-

Grain Reconfigurable computing”.

[9] E.Mirsky and Andr´e DeHon. MATRIX: “A

Reconfigurable Computing Architecture with
Configurable Instruction Distribution and Deployable
Resources,” FCCM’96-IEEE Symposium on FPGAs for
Custom Computing Machines April 17-19, 1996.

[10] I. Kuon, R. Tessier and J. Rose, “FPGA Architecture:

Survey and Challenges,” Foundation and Trends in
Electronic Design Automation, Vol. 2, no. 2, pp. 135-
253, 2007.

[11] C. Bobda, “Introduction to Reconfigurable Computing:

Architectures, Algorithms, and Applications”, Springer,
2007.

[12] Clive. “Max”. Maxfield, “ The Design warrior’s Guide

to FPGA,” ISBN 0-7506-7604-3, ELSEVIER
Publication, 2004

[13] S. Hauck,“The roles of FPGAs in Reprogrammable

Systems”, in Proc. IEEE 86, 4, pp. 615–638, 1998.

[14] N. S. VOROS and K. MASSELOS “System Level

Design of Reconfigurable Systems-on-Chip,” ISBN-10
0-387-26103-6, Springer, 2005.

[15] Khatib J (2001) Configurable Computing

(http://www.geocities.com/siliconvalley/pines/6639/fpga
).

[16] Hutchings BL, Wirthlin MJ “Implementation

Approaches for Reconfigurable Logic Applications,”
Brigham Young University, Dept. of Electrical and
Computer Engineering. 1995

[17] DeHon A “DPGA Utilization and Application”, In:

Proceedings of ACM/SIGDA International Symposium
on FPGAs, pp 115-121, 1996

[18] S. Trimberger and D. Carberryand A. Johnson and J.
Wong “A Time-Multiplexed FPGA”, In: Proceedings of
IEEE Symposium on Field-Programmable Custom
Computing Machines,pp 22-29, 1997.

[19] Xilinx Inc. (1999) VirtexTM: Configuration Architecture

Advanced Users’ Guide

[20] T. Miyamori and K. Olukotun, “A Quantitative Analysis

of Reconfigurable Coprocessors for Multimedia
Applications,” In: Proceedings of IEEE Symposium on
Field-Programmable Custom Computing Machines, pp
2-11, 1998.

[21] RD. Witting and P. Chow, “OneChip: An FPGA

Processor with Reconfigurable Logic,”. In: Proceedings
of the IEEE Symposium on FPGAs for Custom
Computing Machines, pp 126-135, 1996.

[22] R. Razdan and K. Brace andMD. Smith,“PRISC

Software Acceleration Techniques”, Proceedings of the
IEEE International Conference on Computer Design, pp
145-149, 1994.

[23] S. Hauck and TW. Fry andMM. HoslerandJP. Kao, “The

Chimaera Reconfigurable Functional Unit”, Proceedings
of the 5th IEEE Symposium on Field Programmable
Custom Computing Machines, pp 87-96, 1997.

