Circular Choosability of Graphs

R. Aruna¹ , G. Abilaasha²

^{1, 2} Department of Mathematics

^{1, 2} CK College of Engineering and Technology, Cuddalore, Tamilnadu, India-607003

II. PRILIMINARIES

Definition: 2.1.1

choosability of graph G (also called list chromatic number or choice number) It is denoted by $\chi_i(G)$ *, which is the minimum k* such that G is t-choosable. It should be clear that $\chi(G)$ \leq $\chi_l(G) \leq \Delta(G) + 1$. An upper bound of $\chi_l(G)$ in terms of $\chi(G)$ does not exist, since there are bipartite graph with *arbitrarily large chromatic number. The chromatic number can be derived from the choosability of graphs.*

Abstract- This Paper attempts to study the concept of circular

Keywords- Chromatic number, Circular Coloring, circular list assignment, k-degenerate graph.

I. INTRODUCTION

Suppose $G = (V, E)$ is a graph and $p \geq 2q$ are positive integers. A (p,q) - coloring of *G* is a mapping $f: V \rightarrow \{0, 1, \dots, p-1\}$ such that for any edge *uv* of *G*, $q \le |f(u)-f(v)| \le p-q$. Note that a $(p,1)$. coloring of a graph *G* is the same as a *p*-coloring of *G*. The *circular chromatic number* $\chi_c(G)$ of *G* is defined as $\chi_c(G)$ = inf $\{p/q : G \text{ admits a } (p,q)$ - coloring }. It is known that for any graph *G*, $\chi(G) - 1 < \chi_c(G) \leq \chi(G)$.So $\chi_c(G)$ is a refinement of $\chi(G)$ and $\chi(G) = \lceil \chi_c(G) \rceil$ is an approximation of $\chi_c(G)$. Let *C* be a set of integers (called colors). A list assignment *L* is a mapping which assigns to each vertex *v* of *G* a subset $L(v)$ of C. The set $L(v)$ is called the set of permissible colors for *v*. An *L*-coloring of *G* is a mapping $f: V \to C$ such that for each vertex *v*, $f(v) \in L(v)$ and for each edge uv , $f(u) \neq f(v)$. The list chromatic number or the choosability $\chi_l(G)$ of G is the least integer k such that for any list assignment *L* for which $|L(v)|=k$ for every vertex *v* of *G*, there is an *L*-coloring of *G*.

Suppose G is a graph and $p \ge 2q$ are positive integers. A (p,q) -list assignment L is a mapping which assigns to each vertex v of G a subset $L(v)$ of $\{0,1,\dots,p-1\}$. An $L(p,q)$ -coloring of G is a (p,q) coloring f of G such that for any vertex v, $f(v) \in L(v)$.

Definition: 2.1.2

A list size assignment is a mapping $l: V \rightarrow [0, p/q]$. Given a list size assignment 1 an $l - (p, q)$ list assignment is a (p, q) list assignment L such that for each vertex v, $|L(v)| \ge l(v)q$. A graph G is called $l(p,q)$ - choosable if for any $l-(p,q)$ list assignment L, G has an $L - (p, q)$ - coloring.

Definition: 2.1.3

A subset U of $S(r)$ is said to be assignable if it is the union of finitely many disjoint open arcs on $S(r)$. The length of an assignable set U, denoted by length (U), is the sum of the lengths of the open arcs of U.

If $G = (V, E)$ is a graph, then a function L that assigns to each vertex v of G an assignable subset $L(v)$ of $S(r)$ is called an circular list assignment (with respect to r).

If for each vertex v of G, $L(v)$ has length at least t, then L is called a t-circular list assignment (with respect to r).

A circular L-coloring of G is a mapping c from V to $S(r)$ such that $C(v) \in L(v)$ for each vertex v of G and for every pair (u, v) of adjacent vertices of G, $| C(u) - C(v) |_{r} \geq 1.$

2.2 BASIC PROPERTIES

Let $S(r)$ be a circle of circumference r, whose elements of $S(r)$ are identified with points in the interval $[0,r]$. For $a,b \in S(r)$, (a,b) denotes the open interval of $S(r)$ from a to b along the increasing direction.

be precise, if $a \leq b$, then $(a,b) = \{x \in [0,r) : a < x < b\}$ (So $(a,a) = \phi$).

If $a > b$, then $(a,b) = \{x \in \{0\} : a < x < r\} \cup \{x \in \{0\} : 0 \leq x < b\}.$ The closed interval $|a,b|$ is defined similarly.

Definition: 2.2.1

A $t-(p,q)$ - list assignment is a (p,q) - list assignment L such that for every vertex v, $| L(v) | \geq tq$. We say G is circular $t - (p, q)$ - choosable if for any $t - (p, q)$ list assignment L, G has an $L - (p, q)$ - coloring. We say G is circular t-choosable if G is circular $t - (p, q)$ - choosable for any positive integers $p \geq 2q$.

The circular list chromatic number (or the circular choosability) of G is defined as $\chi_{c,l}(G)$ = inf {*t* : *G* is circular *t*-choosable}.

List Circular Chromatic Number of a Graph:

Lemma: 2.2.2

Suppose G is a graph and t is a positive real number. If for every t-circular list assignment L, G has a circular Lcoloring, then G is circular t-choosable. Conversely, if G is circular t- choosable, then for every $\epsilon > 0$ for any $(t + \epsilon)$. circular list assignment L, G has a circular L-coloring.

Proof: Assume for every t-circular list assignment L, G has a circular L-coloring.

Let L' be an arbitrary $t - (p,q)$ - list assignment.

Let L be the t- circular list assignment with respect to $r = p / q$ defined as,

$$
L(v) = \bigcup_{i \in L(v)} \left(\frac{i}{q}, \frac{i+1}{q} \right)
$$

By assumption G has a circular L-coloring of f.

Let $f'(v) = \int f(v)q$, then f' is an $L'-(p,q)$. coloring of G.

Conversely,Assume that G is a circular t-choosable.

i.e.) for every positive integers $p \ge 2q$, for every $t - (p,q)$ - list assignment L of G, there is an $L - (p, q)$ - coloring of G.

Let $\epsilon > 0$ and let L' be a $(t+\epsilon)$ - circular list assignment with respect to r.

Let q be a fixed positive integer.

For a vertex v of G, Let $L(v) = \{i \in Z; i / q \in L(v)\}.$

Since $L'(v)$ has length at least $t + \epsilon$, if q is sufficiently large, then $| L(v) | \geq tq$.

Let $p = [rq]$, then L is a $t - (p,q)$ - list assignement. By assumption, there is an $L - (p, q)$ - coloring f of G. It is straight forward to verify that $f'(v)$ $f(v) = \frac{f(v)}{f(v)}$ $f'(v)$ *q* $=\frac{\partial^2 (x^2)}{\partial x^2}$ is a circular *L*'- coloring of G.

Hence the proof.

Lemma: 2.2.3

The following are equivalent formulations of cch, respectively cch_m.

(i) cch (G) = inf $\{t \geq 1: G$ is t – strict circular choosable (ii) $\text{cch}_{m}(G) = \inf \{ t \geq 1 : G \text{ is } (t, m) - \text{strict circular chooseable} \}$

Proof: The proof of (i):

We shall only give the proof of (i). Because, the proof of (ii) is completely analogous.

Let $\tau(G)$ denote the,

inf $\{t \geq 1: G$ is t – strict circular choosable $\}$ Clearly, $\operatorname{cch}(G) \leq \tau(G)$

Since strict circular colorings are also circular colorings.

Now, let L be a list assignment that does not allow a strict circular coloring.

Let
$$
0 \le \infty 1
$$
 be arbitrary.
Let us set $r := r(L)$
 $r' := (1 - \in) r$ and define L' by setting
 $L'(v) = (1 - \in) L(v) \subseteq S(r')$.

We claim that *L*' does not allow a (non-strict) circular coloring.

From this it will follow that, $\operatorname{cch}(G) \geq t(L')$

$$
=(1-\epsilon)t(L)
$$

and, since $L \in$ are arbitrary, it also show that $\operatorname{cch}(G) \geq \tau(G)$.

To prove the claim,

Suppose that $c': V \to S((1-\epsilon)r)$ is a (non-strict) circular coloring with $c'(v) \in L'(v)$

and Let $c: V \to S(r)$ be given by

$$
c(v) := \frac{c'(v)}{(1-\varepsilon)}
$$

If $uv \in E$ is an edge then $| c(u) - c(u) |_{r} = \min (| c(v) - c(u) | r - | c(v) - c(u) |)$ $(| c'(v) - v'(u) | r' - | c'(v) - c'(u) |)$ $(1 - \varepsilon)$ m in $(|c'(v) - v'(u)| r' - |c'(v) - c'(u)|)$ 1 $c'(v) - v'(u) | r' - c'(v) - c'(u)$ ε = $\frac{\min(|c'(v) - v'(u)| r' - |c'(v) - c'(u))}{(1-\varepsilon)}$ $(v) - c'(u)$ $(1 - \varepsilon)$ $| c^{\prime} (v) - c^{\prime} (u) | r^{\prime}$ 1 $c'(v) - c'(u) |r'|$ ε $=\frac{|c'(v)-c|}{(1-\frac{1}{2}}$

$$
\geq \frac{1}{(1-\varepsilon)}
$$

Using that $|\lambda x - \lambda y| = \lambda |x - y|$ for all $x, y \in R$ and $\lambda \geq 0$.

Thus c is a strict circular coloring with $c(v) \in L(v)$ for all v, contradicting the choice of L.So the claim holds indeed.

Theorem: 2.2.5

The odd cycle
$$
C_{2k+1}
$$
 has $\chi_{c,l}(C_{2k+1}) = 2 + \frac{1}{k}$.
\n**Proof:** Since $\chi_c(C_{2k+1}) = 2 + \frac{1}{k}$
\nBy lemma,
\n"For any graph G, $\chi_c(G) \leq \chi_{c,l}(G)$ ".
\nWe have $\chi_{c,l}(C_{2k+1}) \geq 2 + \frac{1}{k}$.

Let L be a $t - (p, q)$ - list assignment, where $t \geq \frac{(2k+1)}{1}$ *k* $+$ $\geq \frac{(1-\epsilon)^{n}}{n}$.

We shall prove that, C_{2k+1} is $L - (p, q)$ - colorable.

Assume that the vertices of C_{2k+1} are v_0, v_1, \dots, v_{2k} and the edge are $v_i v_{i+1}$ for $i = 0, 1, \dots, 2k$ (addition modulo of $2k + 1$.

Let c_0 be any color in $L(v_0)$.

Let
$$
L'(\nu_1) = \frac{L(\nu_1)}{[c_0 - q + 1, c_0 + q - 1]}
$$

i.e. delete from $L(v_1)$ all the colors that lie in the interval $\left[c_0 - q + 1, c_0 + q - 1\right]$ (Calculation modulo p and if $a > b$, then the interval $|a,b|$ denotes the set ${i : a \le i \le p-1, (or) 0 \le i \le b}.$

As
$$
[c_0 - q + 1, c_0 + q - 1]
$$
 contains $2q - 1$
elements and $L(v_1)$ contains at least $2q + \frac{q}{l}$ elements,

k We conclude that $L'(\nu_1)$ (v_1) $[c_0 - q + 1, c_0 + q + 1]$ 1 1 0 $q + 1, 0$ $f(v_1) = \frac{c_1}{c_0 - q + 1, c_0 + q + 1}$ $L(v_1)$ $L'(\nu_1)$ $c_0 - q + 1, c_0 + q$ $=$ $-q+1, c_0+q+1$ contains

atleast
$$
1 + \left[\frac{q}{k} \right]
$$
 elements.
Let $S = \left[\frac{q}{k} \right]$, Assume $\{c_{1,1}, c_{1,2}, \dots, c_{1,S+1} \} \subseteq L'(v_1)$

Let
$$
L'(v_2) = \frac{L(v_2)}{\prod_{i=1}^{S+1} [c_{1,i} - q + 1, c_{1,i} + q - 1]}
$$

i.e., delete from $L(v_2)$ all the colors that lie in the intersection 1 $1, i \quad 4 \quad 1, \quad 1, \ldots$ 1 $1, c_{1,i} + q - 1$ *S* $i \, \bm{q} \, \bm{1} \, \bm{1} \, \bm{v}_{1,i}$ *i* $c_{1,i} - q + 1, c_{1,i} + q$ $^{+}$ $\bigcap_{i=1}$ $\bigg[c_{1,i}-q+1,c_{1,i}+q-1\bigg].$

We may assume that, $c_{1,1} < c_{1,2} < \cdots, c_{1, S+1}$

Then, 1 $1, i \quad \mathbf{Y} \mathbf{1} \mathbf{1}, \mathbf{1} \mathbf{1}, \mathbf{1} \mathbf{1$ 1 $1, c_{1,i} + q - 1 \subseteq c_{1,i} + S + 1 - q, c_{1,i} + q - 1$ *S* $i \, \bm{q} \, \bm{1} \, \bm{v}_{1,i}$ *i* $c_{1,i} - q + 1, c_{1,i} + q - 1 \leq c_{1,i} + S + 1 - q, c_{1,i} + q$ $^{+}$ $\bigcap_{i=1} [c_{1,i} - q + 1, c_{1,i} + q - 1] \subseteq [c_{1,1} + S + 1 - q, c_{1,1} + q - 1]$

this implies that, 1 $1, i \quad 4 \quad 1, \mathbf{c}_1$ 1 $1, c_{1,i} + q - 1$ *S* $i \in \mathcal{Y} \dashv \mathbf{1}, \mathbf{C}_{1,i}$ *i* $c_{1,i} - q + 1, c_{1,i} + q$ $^{+}$ $\bigcap_{i=1} [c_{1,i} - q + 1, c_{1,i} + q - 1]$ contains atmost $2q - S - 1$ elements.

Hence, $L'(\nu_2)$ contains at least $1+2S$ elements.

Continuing this, Let $L'(\nu_i)$ (v_i) $[c-q+1,c+q-1]$ (v_{i-1}) $f(v_i) = \frac{1}{\left| \int_{0}^{t} [c-q+1, c+q-1] \right|}$ *i i i* $c \in L \backslash \{v_i\}$ $L(v_i)$ $L'(\nu_i)$ $c - q + 1, c + q$ $\in L$ ' (v_{i-}) $=$ $\bigcap [c-q+1,c+q-1]$

Then by induction, we can prove that

$$
|L'(\nu_i)| \geq 1+is
$$

In particular,

$$
| L'(\nu_{2k}) | \ge 1 + 2ks
$$

\n
$$
\ge 1 + 2k \frac{q}{2k}
$$

\nIf k-degenerate
\n[here

$$
= 1 + 2q
$$

Hence,
$$
\frac{L'(v_{2k})}{[c_0 - q + 1, c_0 + q - 1]} \neq \phi
$$

Let c_{2k} be any color $c_{2k-1} \in L'(v_{2k-1})$ such that
 $c_{2k} \notin [c_{2k-1} - p + 1, c_{2k-1} + p - 1]$

Suppose $i \ge 2$ and we have chosen $c_i \in L'(v_i)$ then choose c_{i-1} to be any color in

$$
L'(\nu_{i-1})
$$
 for which $c_i \in [c_{i-1} - p + 1, c_{i+1} + p - 1]$

.Then by definition of $L'(\nu_i)$ such a color exists. Then the color v_i with color $f(v_i) = c_i$ for $i = 0, 1, \dots, 2k$.

By the choice of these colors, f is a (p,q) - L-coloring C_{2k+1} . Hence the theorem.

Lemma: 2.26

Suppose G is a graph and k is an integer. If $\chi_l(G) > k$ then $\chi_{c,l}(G) \geq k$.

Proof: Let L be a list assignment, which assigns to each vertex v of G a set $L(v)$ of at least k permissible colors.

Let
$$
r \ge \max\{i+1: i \in L(v) \text{ for some } v \in V\}.
$$

Let L' be a circular list assignment with respect r of G defined as, $L'(v) = \bigcup_i (i, i+1)$ (v) $\mathcal{L}(v) = \int (i, i+1)$ $i \in L(v)$ $L'(v) = \bigcup (i, i +$ $=\bigcup_{i\in L(\nu)}\big(i,i+1$

Then it is easy to see that if G is not L-colorable.

Then G is not circular *L*'-colorable.

Hence the proof.

2.3 CIRCULAR LIST COLORING OF k-DEGENERATE GRAPH:

If k-degenerate
$$
\underset{\text{there}}{\text{graph}} S = \frac{1}{k} S
$$
 have $\chi_l(G) \leq k+1$.

Page | 239 www.ijsart.com

We conclude that the difference $\chi_{c,l}(G) - \chi_l(G)$ can be arbitrary large

Then the ratio
$$
\frac{\chi_{c,l}(G)}{\chi_l(G)}
$$
 for the graph given in the

proof of theorem 2.3.2 can be arbitrary close to 2. It is not clear whether the ratio $\frac{\chi_{c,l}(G)}{\langle G \rangle}$ (G) *c l*, *l G G* χ χ is bounded.

Theorem: 2.3.1

Suppose G is a finite k-degenerate graph and L is a 2k-circular list assignment of G. Then there is a mapping f which assigns to each vertex v of G an open interval $f(v) \subseteq L(v)$ of positive length such that $v \sim v'$, then for any $x \in f(v)$ and $x' \in f(v')$, $|x - x'|_{r} \ge 1$.

Proof: We prove the result by induction on the number of vertices.

If $|V(G)|=1$ then this is certainly true.

Assume $|V(G)| = n$ and the result holds for any graph G on $n-1$ vertices.

Let v be a vertex of G with $d_G(v) = K'$, $d_G(v) \leq k', k' \leq k$

Let $G' = G - v$

Then *G*' is k-degenerate and hence the required mapping f for G' exists by induction hypothesis.

Let v_1, v_2, \dots, v_k be the neighbours of v.

Assume $f(v_i) = (a_i, b_i)$, for $i = 1, 2, \dots, k$.

Without loss of generality, we may assume that (a_i, b_i) has length less than 2.

(If (a_i, b_i) has length greater than 2, we can replace it by a sub-interval of (a_i, b_i) .

For any point $x \notin [b_i-1, a_i+1]$ (here the calculations are modulo r) there is a point $y \in (a_i, b_i)$ such that, $|x - y|_r > 1$

The interval $\left[b_i - 1, a_i + 1\right]$ has length less than 2.

So the union $\bigcup_{i} [b_i - 1, a_i + 1]$ ' 1 $1, a_i + 1$ *k* i^{l} , u_{i} *i* $b_i - 1, a_i$ $\bigcup_{i=1} [b_i - 1, a_i + 1]$ has length less than $2k' \leq 2k$.

As $L(v)$ has length at least 2k it follows that there is a point $x \in \frac{L(v)}{v}$ $\lfloor b_i - 1, a_i + 1 \rfloor$ $1, a_i + 1$ *k* i , \mathbf{u}_i $L(v)$ *x* $b_i - 1, a_i$ \in $\bigcup [b_i - 1, a_i + 1]$.

Now for each
$$
i \in \{1, 2, \dots, k'\}
$$
 there is a point $y_i \in (a_i, b_i)$ such that $|x - y_i|, > 1$.

Note that the set
$$
\frac{L(v)}{\bigcup_{i=1}^{k} [b_i - 1, a_i + 1]} \text{ is open.}
$$

1

i

 \overline{a}

So for each $i \in \{1, 2, \dots, k\}$ there is an open interval (c_i, d_i) (v) $[b_i - 1, a_i + 1]$ ' 1 , $1, a_i + 1$ i^{i} i^{j} $j = k$ μ_i **i**, μ_i *i* $L(v)$ c_i, d_i $b_i - 1, a_i$ = \subseteq $\bigcup [b_i - 1, a_i + 1]$ containing x and an

open interval $(a_i, b_i) \subseteq (a_i, b_i)$ containing y_i such that for any $x' \in (c_i, d_i)$ and for any

$$
y_i \in (a_i, b_i), |x - y_i|_r > 1
$$

We modify f and then extend it to $V(G)$ by as follows.

$$
f(v_i) = (a_i, b_i)
$$
 and $f(v) = \bigcap_{i=1}^{k'} (c_i, d_i)$

Then it follows from the definition that the resulting mapping is a required mapping for G.

Hence the proof.

Theorem: 2.3.2

For any positive integer k, for any $\epsilon > 0$, there is a k-degenerate graph G and a $(2k - \epsilon)$ circular list assignment L for which there is no circular L-coloring of G.

Proof: Let n be an integer that $n \in \geq 2k^2$. Let $G = K_{k,n^k}$ be the complete bipartite graph with partite sets, $A = \{u_1, u_2, \dots, u_k\}$ and $B = \{v_{j_i, j_2, j_k}; 1 \le j_i \le n\}$

It is obvious that G is k-degenerate.

Let
$$
r = 2k(k+1)
$$
. For $i = 1, 2, \dots, k$.

Let
$$
a_i = (i-1)(2k+2)
$$
 and $\delta = \frac{2k}{n} < \frac{\epsilon}{k}$

Define a circular list assignment L of G as follows.

For
$$
i = 1, 2, \dots, k
$$
 Let $L(u_i) = (a_i, a_i + 2k)$
Let $L(v_{j_1, j_2, \dots, j_k}) = \bigcup_{i=1}^k A_{i, j_i}$
[Where $A_{i, j_i} = (a_i + j_i \delta - 1, a_i + (j_i - 1)\delta + 1)$].

Note that A_{i,j_i} is an interval of length $2-\delta$ and that $A_{i,j_i} \bigcap A_{i',j_i} \neq \phi$ if $i \neq i'$.

So
$$
L(V_{j_1,j_2,\cdots,j_k})
$$
 has length $(2-\delta)k > 2k - \epsilon$.

So L is a $(2k-\epsilon)$ - circular list assignment of G.

We shall prove that G is not circular L-colorable.

Assume to the contrary that c is a circular L-coloring of G.

For $i \in \{1, 2, \dots, k\}$. Let $1 \le j_i \le n$ be an integer such that $c(u_i) \in [a_i + (j_i - 1)\delta, a_i + j_i \delta]$.As $c(u_i) \in L(u_i)$ $=(a_i, a_i + 2k)$ such an integer j_i exists.

For any $i \in \{1, 2, \dots, k\}$ as v_{j_1, j_2, \dots, j_k} is adjacent to u_i . We conclude that,

$$
c(v_{j_1,j_2,\cdots,j_k}) \notin (a_i + j_i \delta - 1, a_i + (j_i - 1)\delta + 1) = A_{i,j_i}
$$

for any $i \in \{1, 2, \dots, k\}$. This is a contradiction, as

$$
L(\mathbf{v}_{j_1,j_2,\cdots,j_k})=\bigcup_{i=1}^k A_{i,j_i}
$$

Hence the proof.

REFERENCES

- [1] A.Vince -Star Chromatic number J.Graph theory 12(4): 551-559, 1988.
- [2] D.R.Guichard- Acyclic graph coloring and the complexity of the Star Chromatic Number, J.Graph theory 17 (1993), 129-134.
- [3] H.L.Abott and B.Zho-, The Star Chromatic number of a graph, J.Graph theory 17 (1993), 349-360.
- [4] X.Zhu-Star Chromatic numbers and products of graphs, J.Graph Theory 16 (1992), 557-569
- [5] Xuding Zhu-Circular Chromatic Number: a Survey Discrete Math, 229 (1-3) 371-410.
- [6] J.A.Bondy and P.Hell- A note on the Star Chromatic number, J.Graph theory 14 (1990) 479-482.
- [7] Z.Pan and X.Zhu- Density of the Circular chromatic number of Series-Parallel graphs, J. Graphs Theory 46 (2004), 57-68.
- [8] B.Mohar-Choosability for the circular chromatic number. http://www.fmf.unilj.si/~mohar/problems/p0201/choosa bilitycircular.html, 2003.
- [9] L.A.Goddyn, M.Tarsi and C.Q.Zhan- on (k,d)-colorings and fractional nowhere-zero flows, J.Graph theory to appear.
- [10] W.Deuber and X.Zhu-Circular coloring of weighted graphs, manuscript, 1994.
- [11] N.Fountoulakis, C.McDiarmid and B.Mohar- Brooks theorem for digraphs in preparation.
- [12] B.Mohar-Circular colorings of edge-weighted graphs, Journal of Graph theory 43 (2003) 107-116.