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Abstract- This paper attempts to study how the vector spaces 
can be used in Fuzzy and the relationship between fuzzy 
vectors and fuzzy bases, and also how the fuzzy dimensions 
can be used to derive the fuzzy vector. We prove that all finite 
dimensional vector spaces have fuzzy bases. Also it is proved 
that the two fuzzy vector spaces have the same fuzzy 
dimensions, and the summation of two fuzzy vector spaces is 
equal to the summation of fuzzy dimensions. 
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I. INTRODUCTION 
 

In set theory the sets are considered as abstract sets 
which are defined as collection of objects having some very 
general property. But in fact, most of the classes of objects 
uncounted in the real physics work are of fuzzy type and not 
sharply defined. Thus they don’t have precisely defined 
criteria of membership. In such a class an object need not 
necessarily either belong to or not belong to a class: there may 
be intermediate grades of membership. This is the concepts of 
fuzzy sets, which is a “class” with a continuum of grades of 
membership. 

 
The notation of fuzziness is introduced in group 

theory, ring theory vector spaces etc and thus fuzzy groups, 
fuzzy rings, fuzzy vector spaces are generated. 

 
In this project some algebraic properties of fuzzy 

vector spaces are discusses. 
 

II. PRELIMINARIES 
 
In this chapter some definitions and results which are 

needed to develop the project are stated. 
 
Definition 2.1: 
  

A non empty set V is said to be a vector space over a 
field F, if V is an abelian group under an operation called 
addition which we denote by + and for every α Є F and v Є V 
there is defined an element v α in V subject to the following 
conditions. 
(i)α (u + v) =  α u +  α v V u, v Є V and α Є F 
(ii)(α + β)u = (α u + β u) V  u Є V,  α ,β Є F 
(iii)α (βu) = (αβ)u    V u  and α ,β Є F 

(iv) I u = u,  V u Є V. 
 
Definition 2.2: 
  

If V is a vector space over a field F, a non-empty 
subset W of V is called a sub space of V if W itself form a 
vector space over F with respect to the addition and scalar 
multiplication already defined in V. 
 
Definition 2.3: 
  

Let V be a vector space over a field F. let v1, 
v2……vn  Є V. Then any element of the form α 1 v1 + α 2 v2 +  
….. + α n V n where α i Є F  is called a linear combination of 
the vectors v1, v2…vn. 
 
Definition 2.4: 
  

Let S be a non-empty subset of a vector V. Then the 
set of all linear combination of finite sets of element of S is 
called the linear span of  S and is denoted by L(S). 
 
Definition 2.5: 
 
 A set of vectors v1, v2…vn  belonging to a vector 
space V is said to be linearly dependent over F if there exists 
scalars α 1, α 2… α n  in F not all zero such that, α 1 v1 +……..+ 
α n vn ≠ 0. 
 

If the vectors v1, v2…vn   are not linearly dependent over F, 
they are said to be linearly independent over F. 
 

(i.e) α 1 v1 +……..+ α n vn = 0 if and only if αi’ s are zero. 
(i.e) α1 = α 2= ….. = α n =0 
 
Definition 2.6: 
 
 The set { v1, v2…vn  } of element of a vector space V 
over a field F is said to be a basis of V, if the vectors v1, v2, 

v2……vn  are linearly independent and if V is generated by v1, 
v2…vn  

 

Definition 2.7: 
 
 The number of elements in the basis of a vector space 
is called the dimension of the vector space. If that number is 
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finite then we say that the vector space is finite dimensional 
otherwise it is of infinite dimensions. 
 
Theorem 2.8: 
 
 Let V be a finite dimensional vector space over a 
field F. let A and B two subspace of V then 
dim (A+B) = dim A + dim B-dim (A∩B). 
 
Definition 2.9: 
 
A fuzzy set in X is a function with domain X and values in I. 
That is, an element of  Ix . 
 

Let A Є Ix the subset of  X in which a assumes non-
zero values is known as support of A.For every x Є X , A(x) is 
called the grade of membership of x in A.X is called the 
carrier of the fuzzy set A. 
 
If A takes values 0 and 1 then A is called a crisp set in X. 
 
Note: 2.10 
 

A member A of  Ix  is contained in a member B of Ix  
denote A≤B if and only if A(x) ≤ B(x), for every x Є X. 
 
Definition 2.11: 

 
Let A ,B Є Ix. We define the following fuzzy sets. 
 
Union : AUB Є Ix  by (AUB)(x)=max{A(x),B(x)}, for every x 
Є X 
 
Intersection: A∩B Є Ix  by 
(A∩B)(x) =min{A(x),B(x)},for every x Є X 
 
Complement :Ac Є Ix  by  
 Ac (x) = 1-A(x),  for every x Є X. 
 
Definition 2.12: 
 
Let f: X Є Y, A Є Ix  and B Є Iy ,then f(A) is a fuzzy set in Y, 
 
Defined by 
 
f(A)(y) =    sup{A(x); x Є f-1(y)},  if  f -1(y) ≠ 0 
                                    0                , if  f -1(y) ≠ 0       
And f-1(B) is a fuzzy set in X, defined by  
 
f-1(B)(x) = B(f(x)), x Є X. 
Then, 
1. f-1(Bc) = (f-1(B))c , for any fuzzy set B in Y 

2.f(f-1(B)) ≤  B, for any fuzzy set B in Y 
3.A ≤ f-1(f(A)), for any fuzzy set A in X. 
 
Definition 2.13: 

 
The product f1*f2 : X1*X2 → Y1*Y2 of mappings,  

 f1 : X1 →Y1 and f2 : X2 →Y2 is defined by 
 (f1*f2) (x1,x2) = (f1(x1),f2(x2)) 
 
Definition 2.14: 

 
For a mapping f : X→ Y, the graph g :X →X*Y  of  f  

is defined by  g(x)=(x, f(x)), for each x Є X 
 
Definition 2.15: 

 
Let A Є Ix   and B Є Iy ,  then by A*B. We denote the 

fuzzy set in X*Y for which (A*B) (x, y) = min (A(x),B(y)),for 
every (x, y) Є  X*Y 

 
Definition 2.16: 
  

The power set p (I) of the given set I is the set of all 
subsets of I. 
 
Definition 2.17: 
  

A non-empty set p, together with a binary relation R 
is said to form a partially ordered set or poset if the following 
conditions hold. 
 
P1: Reflexivity: aRa of all a Є p. 
P2: Anti-Symmetry : If aRb, bRa, then a=b where a, b Є p. 
P3: Transitivity: If aRb and bRc then aRc where a,b,c Є p. For 

conveience we use the symbol ≤ in the place of R. 
 

III. FUZZY VECTOR SPACES 
 

Definition 3.1: 
 

Let E be vector space. Then the fuzzy vector space is 
pair Ẽ = (E, μ) where μ : E → [0,1] with the properties that for 
all a, b  Є R and x, y Є E we have 

μ (ax + by) ≥ μ (x) ∩ μ(y) 
 
Definition 3.2: 
  

If Ẽ = (E, μ) is a fuzzy vector space, then we have the 
following sets defined as  
T μ˚ = μ-1 (α), H μ˚= μ-1 ([α,1]) and Eμ˚ = μ-1 ( [α,1])  for all a Є 
R\{0}, μ(ax)= μ(x) 
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Properties 3.3: 
 
If Ẽ = (E, μ) is fuzzy vector space then 

(i) H μ˚ < H μ
α  < E, 

(ii) If u,v Є E and μ(u) > μ(v) then   
μ(u + v) = μ(v) 

 
Proof : 
 
Let us prove (i) From the definition we have 
H μα = μ-1 ([α,1]) 
          μ (H μ

α ) = ([α,1)]                                (1)                                
 
and E μα = μ-1([α,1]) 
          μ (E μα ) = ([α,1])          (2) 
from (1) and (2) 
( α, 1)     [α,1] 
(i.e) μ-1((α,1])        μ-1([α, 1]) 
(i.e) H μ

α    E μα 

H μα   < E μα 

          Since H μ
α ,  E μα  are subspaces of E, we have H μα ,<  E μα  

< E. 
 
Proof (ii):       
 If u , v Є E and μ(u) > μ(v) then μ(u + v) = μ(v) by the 
definition of fuzzy vector space we have 
μ(u + v)   ≥ μ(u) ∩ μ(v) 
                ≥ min (μ(u) , μ(v)) 
                ≥ μ(u)   
 μ(u + v) ≥ μ(v)             (1) (3) 
Also  
     μ(v)  = μ(u + v-u) ≥ μ(u + v) ∩ μ(u) 
              ≥ min { μ(u + v), μ(u)} 
              ≥ μ(u + v)                       (2)        
From (1) and (2) we have,  μ(u + v) = μ(v) 
 
Proposition 3.4: 
  
 If Ẽ = (E, μ) is a fuzzy vector space and if v,w Є E 
with μ(v) ≠ μ(w) then 
 μ(v + w) = μ(v) ∩ μ(w). 
 
Proof : 
  
Since μ(v) ≠ μ(w)  
Then either μ(v) > μ(w) or μ(v) < μ(w)  
 
Case (1): 
 If μ(v) > μ(w) then  
 μ(v + w) = μ(v)                          (1) 
(by proposition 3.3) 
 

Case (2): 
  
 If μ(w) > μ(v) then  
 μ(v + w) = μ(w)                          (2) 
 from (1) and (2) we have 
 μ(v + w) =(min μ(v), μ(w)) 
               = μ(v) ∩ μ(w) 
 Proposition 3.5: 
 
  If Ẽ = (E, μ) is a fuzzy vector space then  μ (0) = sup 
μ(x) =  sup [μ(E)] 
                     x ε E 
 
Proof :   
 
 Let x Є E,  μ (0) = μ (0x) 
if a ε R, then μ (ax) ≥ μ (x) 
        μ (0x) ≥ μ (x) 
                   ≥ sup μ(x)  
                                   xεE  
        μ (0)   ≥ sup μ(x)  
                                   xεE 
                      μ (0)  ≥ sup [μ(E)]    (1)   
But sup μ (x) ≥ μ(x) for all x,μ Є  E, for x = 0   
        sup μ(E) ≥ μ (0)                     (2)                                   
from (1) and (2) we have  
μ (0) = sup μ (E) = sup μ(x)  
             xεE            xεE 
 
Definition 3.6: 
 
Let S: P(R+ u{0} → R+ u {0}        {∞} where p(x) denotes the 
power set of x such that S(A) = ∑a 
        A ε A 
In case A∩R+ is uncountable we must have  
S(A)=α 
 

 IV.FUZZY LINEAR INDEPENDENCE 
  

Definition 4.1: 
 
 Let Ẽ = (E,μ) be a fuzzy vector space. We say that a 
finite set of vectors {ܺ݅}݅=1

݊ is fuzzy linear independent in Ẽ if 
and only if  {ܺ݅}݅=1

݊ is linearly independent in E and for all 

{ܽ݅}݅=1
݊   is  R.                                           

                    N               n 
 μ {∑ai xi } =  ∩ μ (ai xi) 
                   i=1            i=1 
 
Example 4.2: 
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 Consider Ẽ = (R2, μ) where μ[0,0] = 1, 
μ[0,R\{0}]=1/2 and μ(R2| (0,R]) = ¼ . 
 
we shall show that the vectors X = (1,0) and  
y=(-1,1) are linearly independent in Ẽ. This example also 
illustrates a situation where  
μ(x) = μ(y) and μ(x + y) > μ(x) 
For if x = (1,0) and y = (-1,1) 
Consider αx + βy = 0 
Then α (1,0) + β(-1,1) = (0,0) 
(i.e) (α,0) + (-β, β)  = (0,0) 
               (α-β, β) = (0,0) 
         α-β = 0, β=0  
                   α =β, β=0          
           α = 0, β=0          
 x and y are linearly independent 
 μ(x) = μ(1,0) = ¼ 
 μ(y) = μ(-1,1) = ¼ 
 μ(x) = μ(y)       (1)      
x + y = (1,0) + (-1,1) = (0,1) 
μ (x + y) = ½                                          (2) (2) 
from (1) and (2)  
        μ (x + y) > μ(x) 
(i,e) μ (x + y) ≠ μ (x) ∩ μ(y) 
The vectors are not fuzzy linearly independent. 
 
Proposition 4.3: 
  
Let Ẽ = (E, μ) be a fuzzy vector space. Then any set of vector 
 {Xi}N

i=1    E\{0} which has distinct μ value linearly and fuzzy 
linearly independent. 
Proof: 
  We prove the proposition by induction on N. 
If N=1 we have only one vector and clearly the statement is 
true. Suppose that the proposition is true for N. then we have 
to prove result for (N+1).  
               N+1 
Let   {Xi}i=1  be a set of vectors in E\{0} with distinct μ values. 
By inductive  hypothesis we have         N 
             {Xi}i=1  is fuzzy linearly independent. Suppose that  
       N+1 
{Xi}i=1  is not linearly independent. 
Then X N+1 = ∑aixi, where S     {1,2,…N}, S≠O and for all I Є 
S, ai ≠ 0  
μ(XN+1) = μ(∑aixi) 
   = ∩ μ(aixi) 
      i Є s 
   = ∩ μ(xi) 
     i Є s                                   
         
                                       N 
And hence μ(XN+1)Є{μ (Xi)}i=1   

                                                      N 
This contradicts the fact that {Xi}i=1  has distinct μ values. This 

contradiction  arises because we have assumed that   is 
not linearly linearly independent.       
                     
                      N+1 
Therefore {Xi}i=1  is linearly independent. 
           N+1 
Now we have to show that {Xi}i=1    is fuzzy linearly 
independent. Since, the μ values are different and μ(x), for all 
a  ≠0. 
                         

  
 
                     
Remarks 4.4: 
  
               If Ẽ = (E, μ) is fuzzy vector space such that dim E = 
n, then| μ(E)| ≤  n+1,Where | μ(E)| represents the cardinality of 
μ(E). 
 

V. FUZZY BASES 
 

 In this chapter, we shall present a new definition of 
fuzzy bases for fuzzy vector spaces. 
 
Let Ẽ = (E,µ) be a fuzzy vector space and dim E= n. 
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Definition 5.1: 
 
 Let N denote the set of all natural numbers and let L 
be a complete lattice. An L- fuzzy natural integer is an 
antitone  mapping λ: N → L satisfying  

(૙)ࣅ         = (࢔)ࣅ   L,  Λࢀ	 =	⊥L,  n∊N  

Where  L and L are the largest element and the smallest 
element in L, respectively. The set of all L-fuzzy natural 
integers is denoted by N(L).  
 
Definition 5.2:  
 
Let A be a fuzzy set, and define a map [A] : N →[0,1] ⋺∀n 
∊N ,  
│A│ (n) = ∨ {a ∈ (0,1] :│A[a]│ ≥ n }. Then │A│ ∈ N ([0,1]), 
which is called the cardinality of A. 
 
Definition 5.3: 
 
For any ⋋,µ∈N ([0,1]), the addition  
⋋+ µ of ⋋ and µ is defined as follows: 

 (⋋ +μ)(n) 	= ⋁ (⋋ (݇)⋀μ(݈))௞ା௟ୀ௡  ,for 
any n ∈ N 
 
Lemma 5.4 : 
 

 If E =(E,µ) is a fuzzy vector space, then there exists 
a finite sequence 1=α0 ≥α1>α2>…>αr ≥ 0 such that 
(i)  If a,b ∈ (αi +1,αi], then µ[a] = µ [b] 
(ii) If a ∈ (αi +1,αi], and b ∈ (α i,αi i -1], then µ[a] ⊋ µ [b] 
 
For a fuzzy vector space Ẽ = (E,µ), by this Lemma , we can 
obtain a family of vector space as follows:{0} ⊆ µ[α1] ⊊ µ[α2] 
⊊…⊊ µ[αr]  ⊆ E 

 
       The family of irreducible level subspaces of E = 
(E,µ). Suppose that µ[α1] ≠ {0}, otherwise we can choose  µ[α2] 

.we can obtain a basis Bαr of µ[αr] by extending Bαr-1. Thus we 
obtain a sequence. 
       Bα1 ⊊ Bα2 ⊊ Bα3 ⊊ …  ⊊ Bαr,                           (1) 
 
Where Bαi is a basis of µ[α1](1≤ i ≤ r). therefore, we can define 
a fuzzy subset β of E as follows. 
β (x) = ∨{αi : x ∈ B αi}, Then β is called a fuzzy basis of Ẽ 
corresponding to (1) 
The proof of the following theorem is trivial. 
 
Theorem 5.5: 
  

Let β be a fuzzy basis of Ẽ = (E,µ) obtained by  the 
above equation (1) . Then the following statements hold: 

(i) If a,b ∈ (αi +1,αi], then β[a] = β [b] = Bαi 
(ii) If a ∈ (αi +1,αi], and b ∈ (α i,αi i -1], 
                                             then β [a] ⊋ β [b] 
(iii) If a,b ∈ (αi +1,αi], then β (a) = β (b) = Bα+I 
(iv) If a ∈ (αi +1,αi], and b ∈ (α i,αi i -1],  

                             then β [a] ⊋ β [b] 
 
Corollary 5.6: 
 
 Let β be a fuzzy basis of  Ẽ = (E,µ) obtained by  the 
above equation (1) .Then the following statements hold: 

(i)  a ∈ (0,1], β [a] is a basis of µ[a] 
(ii) a ∈ [0,1), β (a) is a basis of µ(a) 

 
From the above corollary, we can easily obtain the following. 
 
Corollary 5.7: 
 
 Let Ẽ = (E,µ)  be a fuzzy vector space and let β1 and 
β2 be two fuzzy bases of Ẽ. then the following statements hold. 
(i) For any a ∈ (0,1], │(β1) [a]│ = │(β2) [a]│ 
(ii)For any a ∈ [0,1), │(β1) [a]│ = │(β2) [a]│ 
(iii)│β1│ = │β2│ 
 
Definition 5.8: 
 

A fuzzy basis for a fuzzy vector space Ẽ =(E, μ) is a 
fuzzy linearly Independent  basis for E. 
 
Note 5.9: 
 
     The following theorem shows how we can construct 
a very wide class of fuzzy vector spaces with a fuzzy basis. 
 
Theorem 5.10: 

 
Given a vector space E with basis B={V, α }, α Є A, 

constant  μ0 Є (0,1] and any set of constants { μα }α Є A C (0,1]   
such that  
 μ0  ≥  μα  for  all α Є A . Let us construct a function μ : 
E→[0,1] in the following way. Any Z  ≠ 0,  
Z Є E can be uniquely written as  
         N 

Z = ∑ ai V αi with ai ≠ 0 
           i=1 

           N                           N 

Define: μ (Z) = ∩  μ(Vαi) = ∩ μαi and μ(0)= μ0 

          i=1                        i=1 

Cleary is defined for all Z Є E and is well defined we claim 
that Ẽ =(E, μ) is a fuzzy vector space with fuzzy basis B. 
 
Proof: 
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Let X,Y Є E/{0}.  Then X and  Y can be uniquely in 
the following way 
 X=    ∑     Xi Vαi    ,       Y=  ∑     Yi  Vαi    
                                   i ЄCUDx                                i ЄCUDy  

 
Such that C∩ Dx =φ,  C∩ Dy =φ,  Dx∩ Dy =φ,   CU Dx  and  
CU Dy  are finite and non - empty and for all i Є CUDx , Xi Є 
R\{0} and for all 
 i Є CUDy,Yi Є R\{0}. 
Case (i) : 
Suppose a,b ≠ 0 and   a , b Є R, then ax + by ≠ 0   
Let Z={i Є C\ axi + byi  = 0} and  N = C\Z 
     N = {i Є C\ axi + byi  ≠  0} 
Let us suppose that C, Dx, Dy, Z and N are all non empty we 
shall prove the theorem for these sets. In case some of these 
sets are empty the proof of theorem is almost identical. 
μ(ax+by)  
= μ( ∑ (axi +byi) Vαi+ ∑ (axi)Vαi+ ∑ (byi)Vαi)                
          i ЄC                                  i ЄDx                     i ЄDy 
 

= μ(∑ (axi +byi) Vαi+ ∑ (axi)Vαi+ ∑ (byi)Vαi) 
         i ЄN                               i ЄDx                    i ЄDy 
all Co-efficient in the above linear combination are non-zero 
and thus by definition of μ we have, 
μ (ax + by) 
  = (∩ μ (Vαi))  ∩ (∩ μ (Vαi)) ∩  (∩ μ (Vαi)) 
      i ЄN                         i ЄDx                        i ЄDy   
  = (∩ μ αi)  ∩  (∩ μ αi)  ∩  (∩ μ αi)  
      i ЄNUDxUDy          i ЄN                  i ЄDx                

  =  ∩  μ αi  
        i ЄDy 

  ≥      ∩   μ αi
 

               i ЄCUDxUDy   
 =    (  ∩  μ αi    ) ∩ (   ∩  μ αi) 
             i ЄCUDx                      i ЄCUDy   

 
 = μ(x) ∩ μ(y)  
 
Therefore if a,b = 0 and ax+by=0, then 
 μ (ax+by) ≥ μ(x) ∩ μ(y). 
 
case (ii): 
          when (ax+by)=0 
          since  μ(0) = μ0  ≥ sup μ(B) we must have 
μ(ax+by) = μ(0) ≥ μ(x) ∩ μ(y) 
 
case (iii): 
          When a or b is zero, without loss of generality we may 
say a=0 
Then μ (0x+by) = μ (by) ≥  μ (x) ∩ μ(by) 
                                          ≥  μ(x)∩ μ(y) 
Therefore Ẽ=(E, μ) is a fuzzy vector space with fuzzy basics B 

 Hence  the  proof. 
 

VI. FUZZY DIMENSION 
 

In this section, we redefine the fuzzy dimension of 
fuzzy vector spaces. 
 

The cardinality of a crisp set. A can be regarded as an 
increasing set of integers{0,1… ,n}. Such a set is also 
mathematically equivalent to the integer n. for a crisp vector 
space, its dimension was defined by the cardinality of its 
bases. We can define analogously the fuzzy dimension of 
fuzzy vector spaces as follows. 
 
Definition 6.1: 
 
 Let Ẽ = (E, µ) be a fuzzy vector space with a fuzzy 
basis β. Define dim (Ẽ) = │β│. Then dim (Ẽ) is called the 
fuzzy dimension of  
Ẽ = (E,µ). 
 
Theorem 6.2:  
 
 Let Ẽ = (E, µ) be a fuzzy vector space with a fuzzy 
basis β. Then  
dim (Ẽ) (n) = ⋁ {α ∈[0,1) : 
│β (a)│≥ n }= ⋁{α ∈[0,1): dim (Ẽ (a)) ≥ n } 
 
Proof:  
 
we know that, dim (Ẽ (a)) = │β(a)│. For any n ∈ N ,  
let   ⋋= ⋁ {α ∈[0,1): dim (Ẽ (a)) ≥ n }Obviously, we have  
⋋ ≤ dim (Ẽ) (n)= ⋁ {α ∈(0,1] ,│β[a]│≥ n }. 
In order to show that ⋋ ≥ dim (Ẽ)(n), suppose that dim  (Ẽ)(n) 
≠ 0 and dim (Ẽ) (n) > b. Then there exists a > b such that 
│β[a]│≥ n. in this case, n ≤ │β[a]│ ≤ │β[b]│ ≤ │β[b]│. This 
implies ⋋= ⋁ {α ∈[0,1): dim (Ẽ)(a)) ≥ n } ≥b.Thus we have,⋋= 
⋁ {b: 0 ≤ b < dim (Ẽ) (n)}  
            = dim (Ẽ) (n). 
 This completes the proof. 
 
Theorem 6.3:  
 
Let Ẽ = (E,µ) be a fuzzy vector space. Then  
(i) For any a ∈ (0,1], (dim(Ẽ)) [a] = dim (Ẽ [α]) 
(ii) For any a ∈ [0,1), (dim(Ẽ)) [a] = dim (Ẽ [α]) 
 
Proof : 
 
Let  {0} ⊆ µ[α1] ⊊ µ[α2] ⊊…⊊ µ[αr] E 
 
Be the family of irreducible level subspaces of  
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Ẽ = (E,µ). 
(i)We know from definition of dim (Ẽ) that  
dim (Ẽ [α]) ≤(dim (Ẽ)) [α]. Now we need to show that (dim (Ẽ)) 
[α] ≤ dim (Ẽ [α]). From the definition of fuzzy dimension , 
we have n ≤ (dim (Ẽ))[a]  

                         ⟹ (dim (Ẽ) (n) ≥ α 
   ⟹ ⋁ {αi: dim (Ẽ)[a]) ≥ n} ≥ α 
   ⟹ E αi ≥ a such that n ≤ dim (Ẽ[αi]) 
                ⟹ n ≤ dim (Ẽ[αi]) ≤ dim (Ẽ[α]) 
Therefore, (dim (Ẽ)) [α] = dim (Ẽ[α]) for any  
a ∈ (0,1]. 
  (ii)In order to prove (dim (Ẽ))(a)  ≤  dim (Ẽ (α)), we suppose 
that n= (dim (Ẽ)) (α), Then (dim (Ẽ) (n) α, 
                i.e., ⋁ {b ∈(0,1] : dim (Ẽ[b])  ≥ n} > α.  
Hence, there exists b ∈ (0,1] such that a < b and n ≤ dim (Ẽ[b]). 
Since Ẽ[b]  ⊆ Ẽ(a), thus m ≤ dim (Ẽ[a]) therefore, dim (dim (Ẽ))(a)  
≤ dim (Ẽ (α)) 
 In order to show dim (dim (Ẽ))(a)  ≤ dim (Ẽ ))(α), take 
αi > α such that Ẽ(α) = µ[αi]. Then it is easy to see that  dim (Ẽ(α)) 
= dim (µ[αi])  
                               ≤ (dim (Ẽ ))( αi) ≤ (dim(Ẽ))(a) 
 
Theorem 6.4 : 
 
 Let Ẽ1 = (E,µ1) and Ẽ2 = (E, µ2 ) be two fuzzy vector 
spaces, then it holds (dim (Ẽ1+Ẽ2) + dim (Ẽ1 ∩ Ẽ2))(a) = dim 
(Ẽ1)+dim(Ẽ2). 
 
Proof : 
   (dim (Ẽ1+Ẽ2) + dim (Ẽ1 ∩ Ẽ2)(a) 

= (dim (Ẽ1+Ẽ2)) (a)+ (dim (Ẽ1∩Ẽ2))(a)       = dim 
((Ẽ1+Ẽ2)(a)) + dim ((Ẽ1 ∩ Ẽ2))(a)                = dim 
((Ẽ1)(a)+(Ẽ2)(a)) + dim ((Ẽ1)(a) ∩ (Ẽ2)(a)) 

 = dim ((Ẽ1)(a)) + dim(Ẽ2)(a)) 

 = (dim(Ẽ1)) (a) + (dim(Ẽ2) (a)) 
 = (dim(Ẽ1)+ (dim(Ẽ2)) (a) 
Therefore, dim (Ẽ1+Ẽ2) + dim (Ẽ1 ∩ Ẽ2) = dim (Ẽ1)+dim(Ẽ2). 
 
Proposition 6.5: 
 
All finite dimensional vector spaces  
Ẽ = (E, μ) have fuzzy basis. 
 
Proof: 
 
 Since we know that all fuzzy vector spaces Ẽ = (E, μ) 
for which μ(E)is upper well ordered have a fuzzy basis, we 
shall show that μ(E) is upper well ordered. 
  
 If  μ(E) is not upper well-ordered then μ(E) ∈ [0,1] 
has an increasing monotonic limit. There exists a sequence 
{xi}∞

i=1     in E  such that 

 { μ(xi) }∞
i=1 is strictly increasing sequence with limit α.     

Let μ(x1) = β > 0. Since Ẽ = (μ, E) be any fuzzy vector space 
and {Xi}N

i=1     E\{0} which has distinct μ – values is linearly 
and fuzzy linearly independent. 
Let Ẽ = (E, μ) be a fuzzy vector space. Then any set of vector 
{Xi}N

i=1        E| {0} which has distinct μ value linearly and 
fuzzy linearly independent).{xi}∞

i=1  is linearly independent 
consider the following sequence of bases for E.  
Hn = the extension of the linearly independent set {xi} n

i=1 to 
basis for E. 
Now clearly we have,  
μ(x1) < μ(x2) < μ(x3)< ………….. 
       and μ(x1) > β 
 μ(xi) > β for all i 
 ∑ μ(x) >n β 
 xЄHn 
 
Which implies that dim (Ẽ) = ∞, which is a contradiction to 
the fact that Ẽ is finite dimensional. μ(x)   [0,1] has no 
increasing monotonic limit, μ(E) is upper well ordered 
By theorem 3.1 Ẽ = (E, μ) has a fuzzy basis. Hence the theorem.
 
Lemma 6.6: 
  
 If Ẽ = (E, μ) is a finite dimensional vector space then 
for all α Є μ(E)\{0}, E˚μ is finite dimensional. 
Proof :   
                To proof that E˚μ is finite dimensional. Let us 
assume that E˚μ is infinite dimensional and B is a fuzzy basis 
for E, then B ∩ Eμα  is also infinite. Since B∩ Eμα  is a basis 
for Eμα . 
Hence ∑μ (v) ≥ ∑ α μ(v) 
          vЄE        vЄB∩E μ 

           ≥∑ α  = ∞ 
                        vЄB∩E μ 

 ≥ ∑ μ (v) =  ∞          dim (E) = ∞ 
                 vЄB 
 
Which is a contradiction, because given Ẽ is finite 
dimensional if dim (Ẽ)< ∞ 
dim (Ẽ) < ∞.E μ˚ must be finite dimension. 
 
Theorem 6.7: 
 
 If Ẽ = (E, μ) is a finite dimensional, 
dim (Ẽ) = ∑μ(v), where B is any fuzzy basis for E. 
 
Proof :  
 
It is sufficient to prove that  
∑ μ(v) ≤ ∑ μ (v) where B* is any basis for E vЄB      vЄB 
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By lemma 5.1 If Ẽ = (E, μ) is a finite dimensional vector space 
then for all  
α Є μ(E)\{0}, E˚μ is finite dimensional.for all 
 α > 0,  Eμα  is a finite dimensional and B is an  
B ∩ Eμα is a fuzzy basis for Eα =  Eμα  μ\ Eμα). As Eμα ∩B is 
an independent subset of Eμα. 
 we know that, ∑   α μ(v)  ≤  ∑   α μ(v)   
                       vЄB∩E μ       vЄB∩E μ 

This is true for all α >0, and thus we must have,  
∑   μ(v)  ≤  ∑   α μ(v)                                                                 
vЄB             

 
VII. CONCLUSION 

 
                   We study the relation between vector space and 
fuzzy bases with examples for each concept, the general 
properties of fuzzy bases, fuzzy dimension, and fuzzy vector 
space. We prove that all finite dimensional vector spaces have 
fuzzy bases. Also it is proved that the two fuzzy vector spaces  
have the same fuzzy dimensions, and the summation of two 
fuzzy vector spaces is equal to the summation of fuzzy  
dimensions. 
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