
IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 59 www.ijsart.com

Microservices

Khateeja Ambareen1, Shridhar K2

1, 2 Department of Computer Science and Engineering
1 GSSS Institute of Engineering and Technology For Women Mysore, Karnataka, India

2 VSS Division, Chennai, Tamil Nadu, India

Abstract- The Microservice architectural style is an approach
to developing a single application as a suite of small services,
each running in its own process and communicating with
lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and
independently deployable by fully automated deployment
machinery. There is a bare minimum of centralized
management of these services, which may be written in
different programming languages and use different data
storage technologies.

A microservice architecture is the natural
consequence of applying the single responsibility principle at
the architectural level. This results in a number of benefits
over a traditional monolithic architecture such as independent
deployability, language, platform and technology
independence for different components, distinct axes of
scalability and increased architectural flexibility.
Microservices are often integrated using REST over HTTP.

Keywords- REST over HTTP,MONOLITHIC ARCHITECTURe,
MICROSERVICES.

I. INTRODUCTION

Distributed computing has been constantly evolving
in the past two decades. During the mid-90s, the industry
evaluated component technology based on Corba, DCOM and
J2EE. A component was regarded as a reusable unit of code
with immutable interfaces that could be shared among
separate applications. The component architecture represented
a shift away from how applications were previously developed
using dynamic-link libraries, among others. However, the
communication protocol used by each component technology
was proprietary – RMI for Java, IIOB for Corba and RPC for
DCOM. This made interoperability and integration of
applications built on different platforms using different
languages a complex task.

Evolution of microservices: With the acceptance of XML
and HTTP as standard protocols for cross-platform
communication, service-oriented architecture (SOA)
attempted to define a set of standards for interoperability.
Initially based on Simple Object Access Protocol, the
standards for web services interoperability were handed over

to a committee called Oasis. Suppliers like IBM, Tibco,
Microsoft and Oracle started to ship enterprise application
integration products based on SOA principles. While these
were gaining traction among the enterprises, young Web 2.0
companies started to adopt representational state transfer
(Rest) as their preferred protocol for distributed computing.
With JavaScript gaining ground, JavaScript Object Notation
(JSON) and Rest quickly became the de facto standards for the
web.

Microservices are not just code modules or libraries –
they contain everything from the operating system, platform,
framework, runtime and dependencies, packaged as one unit
of execution. Each microservice is an independent,
autonomous process with no dependency on other
microservices. It doesn’t even know or acknowledge the
existence of other microservices. Microservices communicate
with each other through language and platform-agnostic
application programming interfaces (APIs). These APIs are
typically exposed as Rest endpoints or can be invoked via
lightweight messaging protocols such as RabbitMQ. They are
loosely coupled with each other avoiding synchronous and
blocking-calls whenever possible.

II. RELATED WORK

"Microservices" became the hot term in 2014,

attracting lots of attention as a new way to think about
structuring applications. I'd come across this style several
years earlier, talking with my contacts both in ThoughtWorks
and beyond. It's a style that many good people find is an
effective way to work with a significant class of systems. But
to gain any benefit from microservice thinking, you have to
understand what it is, how to do it, and why you should
usually do something else. The term "Micro-Web-Services"
was first introduced during a presentation at CloudComputing
Expo in 2005 by Dr. Peter Rodgers. On slide #4 of the
conference presentation he states that "Software components
are Micro-Web-Services. Juval Lowry also had similar
precursor type of thinking about classes being granular
services, as the next evolution of Microsoft architecture.
Services are composed using Unix-like pipelines (the Web
meets Unix true loose-coupling). Services can call services
(multiple language run-times). Complex service-assemblies
are abstracted behind simple URI interface. Any service, at

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 60 www.ijsart.com

any granularity, can be exposed". He described how a well
designed service platform "applies the underlying architectural
principles of the Web and Web services together with Unix-
like scheduling and pipelines to provide radical flexibility and
improved simplicity by providing a platform to apply service-
oriented architecture throughout your application
environment.” [4] The motivation behind this design, which
originated in a research project at Hewlett Packard Labs, is to
make code less brittle and large-scale, complex software
systems robust to change.[5] To make "Micro-Web-Services"
work one has to question and analyze the foundations of
architectural styles such as SOA and the role of messaging
between software components in order to arrive at a new
general computing abstraction.[6] In this case, one can think
of Resource-Oriented Computing (ROC) as a generalized form
of the Web abstraction. If in the Unix abstraction "everything
is a file", then in ROC everything is a "Micro-Web-Service".
It can contain information, code or the results of computations
so that a service can be either a consumer or producer in a
symmetrical and evolving architecture.

III. EXISTING SYSTEM

MONOLITHIC ARCHITECTURE

Let’s imagine that you are building an e-commerce
application that takes orders from customers, verifies
inventory and available credit, and ships them. The application
consists of several components including the StoreFrontUI,
which implements the user interface, along with some backend
services for checking credit, maintaining inventory and
shipping orders[8].

The application is deployed as a single monolithic
application. For example, a Java web application consists of a
single WAR file that runs on a web container such as Tomcat.
A Rails application consists of a single directory hierarchy
deployed using either, for example, Phusion Passenger on
Apache/Nginx or JRuby on Tomcat. You can run multiple
instances of the application behind a load balancer in order to
scale and improve availability.

Fig. 1: Monolithic architecture

This solution has a number of benefits[2]:
 Simple to develop - the goal of current development

tools and IDEs is to support the development of
monolithic applications

 Simple to deploy - you simply need to deploy the
WAR file (or directory hierarchy) on the appropriate
runtime

 Simple to scale - you can scale the application by
running multiple copies of the application behind a
load balancer.

However, once the application becomes large and the

team grows in size, this approach has a number of
drawbacks[2] that become increasingly significant:

 The large monolithic code base intimidates

developers, especially ones who are new to the team.
The application can be difficult to understand and
modify. As a result, development typically slows
down. Also, because there are not hard module
boundaries, modularity breaks down over time.
Moreover, because it can be difficult to understand
how to correctly implement a change the quality of
the code declines over time. It's a downwards spiral.

 Overloaded IDE -the larger the code base the slower
the IDE and the less productive developers are.

 Overloaded web container-the larger the application
the longer it takes to startup.This had have a huge
impact on developer productivity because of time
wasted waiting for the container to start. It also
impacts deployment too.

 Continuous deployment is difficult - a large
monolithic application is also an obstacle to frequent
deployments. In order to update one component you
have to redeploy the entire application. This will
interrupt background tasks (e.g. Quartz jobs in a Java
application), regardless of whether they are impacted
by the change, and possibly cause problems. There is
also the chance that components that haven’t been
updated will fail to start correctly. As a result, the
risk associated with redeployment increases, which
discourages frequent updates. This is especially a
problem for user interface developers, since they
usually need to iterative rapidly and redeploy
frequently.

 Scaling the application can be difficult - a monolithic
architecture is that it can only scale in one dimension.
On the one hand, it can scale with an increasing
transaction volume by running more copies of the
application. Some clouds can even adjust the number
of instances dynamically based on load. But on the

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 61 www.ijsart.com

other hand, this architecture can’t scale with an
increasing data volume. Each copy of application
instance will access all of the data, which makes
caching less effective and increases memory
consumption and I/O traffic. Also, different
application components have different resource
requirements - one might be CPU intensive while
another might memory intensive. With a monolithic
architecture we cannot scale each component
independently

 Obstacle to scaling development - A monolithic
application is also an obstacle to scaling
development. Once the application gets to a certain
size its useful to divide up the engineering
organization into teams that focus on specific
functional areas. For example, we might want to have
the UI team, accounting team, inventory team, etc.
The trouble with a monolithic application is that it
prevents the teams from working independently. The
teams must coordinate their development efforts and
redeployments. It is much more difficult for a team to
make a change and update production.

 Requires a long-term commitment to a technology
stack - a monolithic architecture forces you to be
married to the technology stack (and in some cases,
to a particular version of that technology) you chose
at the start of development .With a monolithic
application, can be difficult to incrementally adopt a
newer technology. For example, let’s imagine that
you chose the JVM. You have some language choices
since as well as Java you can use other JVM
languages that inter-operate nicely with Java such as
Groovy and Scala. But components written in non-
JVM languages do not have a place within your
monolithic architecture. Also, if your application uses
a platform framework that subsequently becomes
obsolete then it can be challenging to incrementally
migrate the application to a newer and better
framework. It’s possible that in order to adopt a
newer platform framework you have to rewrite the
entire application, which is a risky undertaking.

IV. PROPOSED SYSTEM

The term "Microservice Architecture" has sprung up

over the last few years to describe a particular way of
designing software applications as suites of independently
deployable services[1]. While there is no precise definition of
this architectural style, there are certain common
characteristics around organization around business capability,
automated deployment, intelligence in the endpoints, and
decentralized control of languages and data.

A microservice architecture is the natural
consequence of applying the single responsibility principle at
the architectural level[8]. This results in a number of benefits
over a traditional monolithic architecture such as independent
deployability, language, platform and technology independe
nce for different components, distinct axes of scalability and
increased architectural flexibility.

Microservices are often integrated using REST over
HTTP. A microservice architecture promotes developing and
deploying applications composed of independent,
autonomous, modular, self-contained units.

A component was regarded as a reusable unit of code
with immutable interfaces that could be shared among
disparate applications.

To start explaining the microservice style it's useful
to compare it to the monolithic style: a monolithic application
built as a single unit. Enterprise Applications are often built in
three main parts: a client-side user interface (consisting of
HTML pages and javascript running in a browser on the user's
machine) a database (consisting of many tables inserted into a
common, and usually relational, database management
system), and a server-side application. The server-side
application will handle HTTP requests, execute domain logic,
retrieve and update data from the database, and select and
populate HTML views to be sent to the browser. This server-
side application is a monolith - a single logical executable[2].
Any changes to the system involve building and deploying a
new version of the server-side application.

Such a monolithic server is a natural way to approach
building such a system. All your logic for handling a request
runs in a single process, allowing you to use the basic features
of your language to divide up the application into classes,
functions, and namespaces. With some care, you can run and
test the application on a developer's laptop, and use a
deployment pipeline to ensure that changes are properly tested
and deployed into production. You can horizontally scale the
monolith by running many instances behind a load-balancer.
Monolithic applications can be successful, but increasingly
people are feeling frustrations with them - especially as more
applications are being deployed to the cloud . Change cycles
are tied together - a change made to a small part of the
application, requires the entire monolith to be rebuilt and
deployed. Over time it's often hard to keep a good modular
structure, making it harder to keep changes that ought to only
affect one module within that module. Scaling requires scaling
of the entire application rather than parts of it that require
greater resource.

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 62 www.ijsart.com

Fig. 2:Monolithics and Microservices

These frustrations have led to the microservice

architectural style: building applications as suites of services.
As well as the fact that services are independently deployable
and scalable, each service also provides a firm module
boundary, even allowing for different services to be written in
different programming languages. They can also be managed
by different teams .

4.1 Characteristics of a Microservice Architecture

We cannot say there is a formal definition of the
microservices architectural style, but we can attempt to
describe what we see as common characteristics for
architectures that fit the label. As with any definition that
outlines common characteristics, not all microservice
architectures have all the characteristics, but we do expect that
most microservice architectures exhibit most characteristics.

4.1.1 Componentization via Services

For as long as we've been involved in the software
industry, there's been a desire to build systems by plugging
together components, much in the way we see things are made
in the physical world. During the last couple of decades we've
seen considerable progress with large compendiums of
common libraries that are part of most language platforms.

When talking about components we run into the
difficult definition of what makes a component. Our definition
is that a component is a unit of software that is independently
replaceable and upgradeable.

Microservice architectures will use libraries, but their
primary way of componentizing their own software is by
breaking down into services. We define libraries as
components that are linked into a program and called using in-
memory function calls, while services are out-of-process
components who communicate with a mechanism such as a
web service request, or remote procedure call. (This is a

different concept to that of a service object in many OO
programs [3].)

One main reason for using services as components
(rather than libraries) is that services are independently
deployable. If you have an application [4] that consists of a
multiple libraries in a single process, a change to any single
component results in having to redeploy the entire application.
But if that application is decomposed into multiple services,
you can expect many single service changes to only require
that service to be redeployed. That's not an absolute, some
changes will change service interfaces resulting in some
coordination, but the aim of a good microservice architecture
is to minimize these through cohesive service boundaries and
evolution mechanisms in the service contracts.

Another consequence of using services as
components is a more explicit component interface. Most
languages do not have a good mechanism for defining an
explicit Published Interface. Often it's only documentation and
discipline that prevents clients breaking a component's
encapsulation, leading to overly-tight coupling between
components. Services make it easier to avoid this by using
explicit remote call mechanisms.

Using services like this does have downsides.
Remote calls are more expensive than in-process calls, and
thus remote APIs need to be coarser-grained, which is often
more awkward to use. If you need to change the allocation of
responsibilities between components, such movements of
behavior are harder to do when you're crossing process
boundaries.

At a first approximation, we can observe that services
map to runtime processes, but that is only a first
approximation. A service may consist of multiple processes
that will always be developed and deployed together, such as
an application process and a database that's only used by that
service.

4.1.2 Organized around Business Capabilities

When looking to split a large application into parts,
often management focuses on the technology layer, leading to
UI teams, server-side logic teams, and database teams. When
teams are separated along these lines, even simple changes can
lead to a cross-team project taking time and budgetary
approval. A smart team will optimise around this and plump
for the lesser of two evils - just force the logic into whichever
application they have access to. Logic everywhere in other
words. This is an example of Conway's Law[5]in action.

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 63 www.ijsart.com

Any organization that designs a system (defined broadly) will
produce a design whose structure is a copy of the
organization's communication structure.

-- Melvyn Conway, 1967

Fig. 3: Organized around Business Capabilities

The microservice approach to division is different,

splitting up into services organized around business capability.
Such services take a broad-stack implementation of software
for that business area, including user-interface, persistant
storage, and any external collaborations. Consequently the
teams are cross-functional, including the full range of skills
required for the development: user-experience, database, and
project management.

Fig.4:Service boundaries reinforced by team boundaries

Large monolithic applications can always be
modularized around business capabilities too, although that's
not the common case. Certainly we would urge a large team
building a monolithic application to divide itself along
business lines. The main issue we have seen here, is that they
tend to be organised around too many contexts. If the monolith
spans many of these modular boundaries it can be difficult for
individual members of a team to fit them into their short-term
memory. Additionally we see that the modular lines require a
great deal of discipline to enforce. The necessarily more
explicit separation required by service components makes it
easier to keep the team boundaries clear.

4.1.3 Decentralized Data Management

Decentralization of data management presents in a
number of different ways. At the most abstract level, it means
that the conceptual model of the world will differ between
systems. This is a common issue when integrating across a
large enterprise, the sales view of a customer will differ from

the support view. Some things that are called customers in the
sales view may not appear at all in the support view. Those
that do may have different attributes and (worse) common
attributes with subtly different semantics. This issue is
common between applications, but can also occur within
applications, particular when that application is divided into
separate components. A useful way of thinking about this is
the Domain-Driven Design notion of Bounded Context. DDD
divides a complex domain up into multiple bounded contexts
and maps out the relationships between them. This process is
useful for both monolithic and microservice architectures, but
there is a natural correlation between service and context
boundaries that helps clarify, and as we describe in the section
on business capabilities, reinforce the separations.

As well as decentralizing decisions about conceptual
models, microservices also decentralize data storage decisions.
While monolithic applications prefer a single logical database
for persistant data, enterprises often prefer a single database
across a range of applications - many of these decisions driven
through vendor's commercial models around licensing.
Microservices prefer letting each service manage its own
database, either different instances of the same database
technology, or entirely different database systems - an
approach called Polyglot Persistence. You can use polyglot
persistence in a monolith, but it appears more frequently with
microservices.

Fig.5: Decentralized Datamanagement

Decentralizing responsibility for data across

microservices has implications for managing updates. The
common approach to dealing with updates has been to use
transactions to guarantee consistency when updating multiple
resources. This approach is often used within monoliths.

Using transactions like this helps with consistency,
but imposes significant temporal coupling, which is
problematic across multiple services. Distributed transactions
are notoriously difficult to implement and and as a
consequence microservice architectures emphasize
transactionless coordination between services, with explicit
recognition that consistency may only be eventual consistency
and problems are dealt with by compensating operations.

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 64 www.ijsart.com

Choosing to manage inconsistencies in this way is a new
challenge for many development teams, but it is one that often
matches business practice. Often businesses handle a degree of
inconsistency in order to respond quickly to demand, while
having some kind of reversal process to deal with mistakes.
The trade-off is worth it as long as the cost of fixing mistakes
is less than the cost of lost business under greater consistency.

4.1.4 Infrastructure Automation

A monolithic application will be built, tested and
pushed through these environments quite happlily. It turns out
that once you have invested automating the path to production
for a monolith, then deploying more applications doesn't seem
so scary any more. Remember, one of the aims of CD is to
make deployment boring, so whether its one or three
applications, as long as its still boring it doesn't matter.

Fig. 6: Module deployment often differs

4.2 Internal layers of microservices :

Microservices can usually be split into similar kinds
of modules. Often, microservices display similar internal
structure consisting of some or all of the displayed layers.

Fig.7: Internal layers of microservices

Resources act as mappers between the application

protocol exposed by the service and messages to objects
representing the domain. Typically, they are thin, with
responsibility for sanity checking the request and providing a

protocol specific response according to the outcome of the
business transaction

Almost all of the service logic resides in a domain
model representing the business domain. Of these
objects, services coordinate across multiple domain activities,
whilst repositories act on collections of domain entities and
are often persistence backed.

If one service has another service as a collaborator,
some logic is needed to communicate with the external
service. A gateway encapsulates message passing with a
remote service, marshalling requests and responses from and
to domain objects. It will likely use a client that understands
the underlying protocol to handle the request-response cycle.
Except in the most trivial cases or when a service acts as an
aggregator across resources owned by other services, a micro-
service will need to be able to persist objects from the domain
between requests. Usually this is achieved using object
relation mapping or more lightweight data mappers depending
on the complexity of the persistence requirements.

Often, this logic is encapsulated in a set of dedicated
objects utilised by repositories from the domain.

Microservices connect with each other over networks
and make use of “external” datastores.

V. CONCLUSIONS

Breaking down your monolithic application into
microservices also means breaking down your monitoring
approach. For monolithic applications, traditional APM tools
that provide code-level visibility are useful to understand
performance bottlenecks inside the application.

For microservices applications, focus on
understanding the performance of the individual microservices
and the interactions between them, and use low
overhead instrumentation techniques to gather application-
specific metrics.

A Monolithic architecture only makes sense for
simple, lightweight applications. You will end up in a world of
pain if you use it for complex applications.

The Microservice architecture pattern is the better
choice for complex, evolving applications despite the
drawbacks and implementation challenges.

REFERENCES

IJSART - Volume 2 Issue 11 –NOVEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 65 www.ijsart.com

[1] martinfowler.microservices (2016,November6) [Online].
Available: http://martinfowler.com/articles/microservices

[2] How-to-prepare-next-generation-cloud-applications ,

microservice .(2016,November 5). [Online] Available
:http://www.computerweekly.com/feature/Microservices-
How-to-prepare-next-generation-cloud-applications

[3] microservices .(2016,November 5). [Online]Available:

https://en.wikipedia.org/wiki/Microservices

[4] Rodgers and Peter. "Service-Oriented Development on
NetKernel- Patterns, Processes & Products to Reduce
System Complexity". CloudComputingExpo. http://sys-
contv.sys-con.com. Aug.19. 2015.

[5] Russell and Perry; Rodgers, Peter; Sellman, Royston
(2004). "Architecture and Design of an XML Application
Platform". HP Technical Reports. pp. 62. Retrieved 20
August 2015.

[6] Hitchens and Ron "Your Object Model Sucks" PragPub
Magazine (Pragmatic Programmers):CA, Dec .2014,
pp.15-25

[7] Swaine and Michael ed.. PragPub Magazine (Pragmatic
Programmers):CA, Dec .2014, pp.129-140

[8] Namiot, Dmitry, and Manfred Sneps-Sneppe. "On micro-

services architecture." International Journal of Open
Information Technologies 2.9 (2014).

