$\tilde{g}(1,2)^*$ - HOMEOMORPHISM

A.Thamilisai¹, S.Meenakshi²

^{1, 2} Department of Mathematics

^{1, 2} Kamaraj Engineering College, Virudunagar, Tamilnadu, India

Abstract- In this paper introduce two new classes of bitopological function called \tilde{g} (1,2)*and strongly \tilde{g} (1,2)* by using \tilde{g} (1,2)*.Basic properties of theses two functions are studied and the relation between these types and other existing ones are established.we will discuss about Every (1,2)*homeomorphism is $\widetilde{g}(1,2)^*$ -homeomorphism and we also about the composition of two $\tilde{g}(1,2)^{*}$ homeomorphisms is not always a $\widetilde{g}(1,2)^*$ -homeomorphism

 \widetilde{g} (1,2)*-homeomorphisms $(1.2)^{*-sg-}$ and and homeomorphisms are independent of each other.

Keywords- Bitopological function, hoemomorphism, $\tilde{g}_{(1,2)}^*$ -closed set, $\tilde{g}(1,2)^*$ -open set $(1,2)^*$ -sg-homeomorphism

I. INTRODUCTION

Njastad introduced a-open sets. Maki et al. [3] generalized the concepts of closed sets to a-generalized closed (briefly α g-closed) sets which are strictly weaker than α closed sets. Veera Kumar [4] defined g-closed sets in topological spaces. Thivagar et al. [5] introduced αĝ-closed sets which lie between a-closed sets and ag-closed sets in topological spaces.

Maki et al introduced the notion of generalized homeomorphisms (briefly g-homeomorphism) which are generalizations of homeomorphisms in topological spaces. Subsequently, Devi et al [6] introduced two class of functions called generalized semi-homeomorphisms (briefly gshomeomorphism) and semigeneralized homeomorphisms (briefly sg-homeomorphism). Quite recently, Zbigniew Duszynski [5] have introduced ag-homeomorphisms in topological spaces.

It is well-known that the above mentioned topological sets and functions have been generalized to bitopological settings due to the efforts of many modern topologists [see 7, 8, 9, 10, 11, 12, 13, 14, 15]. In this present chapter, we introduce two new class of bitopological functions called $\tilde{g}(1,2)^*$ -homeomorphisms and strongly $\tilde{g}(1,2)^*$ homeomorphisms by using \tilde{g} (1,2)*-closed sets. Basic properties of these two functions are studied and the relation between these types and other existing ones are established.

Definition 2.1

A subset A of a bitopological space X is called

- (1) (1,2)*-semi-open set [13] if
- $A \subseteq \tau_{1,2} cl(\tau_{1,2} int(A))$ (2) $(1,2)^*$ - α -open set [12] if
- $A \subseteq \tau_{1,2} int(\tau_{1,2} (cl(\tau_{1,2} int(A)))).$ (3) regular (1,2)*-open set [14] if

$$A = \tau_{1,2} - \operatorname{int}(\tau_{1,2} - cl(A))$$

Definition 2.2

A subset A of a bitopological space X is called

(i) $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -g-closed) [15] if $\tau_{1,2} - cl(A) \subseteq U$ whenever

 $A \subseteq U$ and U is $\tau_{1,2}$ – open in X.

- (ii) $(1,2)^*$ -semi-generalized closed (briefly, $(1,2)^*$ -sg-closed) [13] if $(1,2)^*$ - sc(A) $\subset U$ whenever $A \subset U$ and U is $(1,2)^*$ -semi-open in X.
- (iii) ((1,2)*-generalized semi-closed (briefly, (1,2)*-gs-closed) [15] if $(1,2)^*$ scl $(A) \subset U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ – open in X.
- (iv) (iv) $(1,2)^*$ -ĝ-closed [9] if $\tau_{1,2} cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semiopen in X.
- (v) (v) $(1,2)^*$ -ag-closed [9] if $(1,2)^*$ -acl $(A) \subset U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ – open in X.

The complements of the above mentioned closed sets are called their respective open sets.

(vi) $(1,2)^*-\alpha \hat{g}$ -closed [9] or \tilde{g} $(1,2)^*$ -closed if $(1,2)^*-\alpha cl$ $(A) \subset U$ whenever $A \subset U$ and U is $(1,2)^*$ -ĝ-open in X.

Definition 2.3

A function $f: (X, \tau 1, \tau 2) \rightarrow (Y, \sigma 1, \sigma 2)$ is called (1,2)*-g-open [15] (resp.(1,2)*-ĝ-open [9], (1,2)*-open [15], $(1,2)^*$ -sg-open [13], $(1,2)^*$ -gs-open [15], $(1,2)^*$ - α -open [9], $(1,2)^*$ - α g-open [9], $(1,2)^*$ - α ĝ-open [9]) if the image of every

discuss

 $\tau_{1,2}$ -open set in X is (1,2)*-g-open (resp. (1,2)*-ĝ-open, $\sigma_{1,2}$ -open, (1,2)*-sg-open, (1,2)*-g-open, (1,2)*-a-open, (1,2)*-aĝ-open, (1,2)*-aĝ-open) in Y.

Definition 2.4

- A function f : (X, $\tau 1$, $\tau 2$) \rightarrow (Y, $\sigma 1$, $\sigma 2$) is called
- (i) $(1,2)^*$ -g-continuous [15] if $f^1(V)$ is $(1,2)^*$ -g-closed in X, for every $\sigma_{1,2}$ closed set V of Y.
- (ii) $(1,2)^*$ -sg-continuous [13] if f¹ (V) is $(1,2)^*$ -sg-closed in X, for every $\sigma_{1,2}$ – closed set V of Y.
- (iii) (1,2)*-gs-continuous [15] if $f^1(V)$ is (1,2)*-gs-closed in X, for every $\sigma_{1,2}$ - closed set V of Y.
- (iv) $(1,2)^*-\hat{g}$ -continuous [9] if f^1 (V) is $(1,2)^*-\hat{g}$ -closed in X, for every $\sigma_{1,2}$ closed set V of Y.
- (v) (1,2)*-continuous [9] if f^1 (V) is $\sigma_{1,2}$ -closed in X, for every $\sigma_{1,2}$ -closed set V of Y.

Definition 2.5

A function f: (X, $\tau 1$, $\tau 2$) \rightarrow (Y, $\sigma 1$, $\sigma 2$) is called

- (i) (1,2)*-g-homeomorphism if f is bijection, (1,2)*-g-open and (1,2)*-gcontinuous.
- (ii) (1,2)*-sg-homeomorphism if f is bijection, (1,2)*-sgopen and (1,2)*-sgcontinuous.
- (iii) (1,2)*-gs-homeomorphism if f is bijection, (1,2)*-gsopen and (1,2)*-gscontinuous.
- (iv) $(1,2)^*$ -homeomorphism if f is bijection, $(1,2)^*$ -open and $(1,2)^*$ -continuous.

Definition 2.6

A function $f: (X, \tau 1, \tau 2) \rightarrow (Y, \sigma 1, \sigma 2)$ is called

- (i) $(1,2)^{*-} \alpha$ -continuous if $f^{-1}(V)$ is $(1,2)^{*-} \alpha$ open in X, for every $\sigma_{1,2}$ open set V of Y.
- (ii) \tilde{g} (1,2)*-continuous if f^1 (V) is \tilde{g} (1,2)*-closed in X, for every $\sigma_{1,2}$ *closed* set V of Y.
- (iii) \tilde{g} (1,2)*-irresolute if f¹ (V) is \tilde{g} (1,2)*-closed in X, for every \tilde{g} (1,2)*-closed set V of Y.

Definition 2.7

A function $f : (X, \tau 1, \tau 2) \rightarrow (Y, \sigma 1, \sigma 2)$ is calledpre- $(1,2)^*$ - α -closed (resp. pre $(1,2)^*$ - α -open) if the image of every $(1,2)^*$ - α -closed (resp. $(1,2)^*$ - α -open) in X is $(1,2)^*$ - α -closed (resp. $(1,2)^*$ - α -open) in Y.

- (i) (1,2)*-α-irresolute if f-1(V) is (1,2)*-α-open in X, for every (1,2)*-α-open set V of Y.
- (ii) (1,2)*-gc-irresolute if f-1(V) is (1,2)*-g-closed in X, for every (1,2)*-g-closed set V of Y.
 a. (iv) (1,2)*-α-homeomorphism if f is bijection,
 - $(1,2)^*-\alpha$ -irresolute and pre- $(1,2)^*-\alpha$ -closed.

Remark 2.8

- (i) Every $(1,2)^*-\alpha$ -closed set is \tilde{g} $(1,2)^*$ -closed but not conversely.
- (ii) Every \tilde{g} (1,2)*-open set is (1,2)*-gs-open but not conversely.

III. \tilde{g} (1,2)*-HOMEOMORPHISMS

Definition 3.1

A bijective function $f: (X,\tau 1, \tau \rightarrow (Y, \sigma 1, \sigma 2))$ is called a strongly $\tilde{g}(1,2)^*$ -closed (resp. strongly $\tilde{g}(1,2)^*$ open) if the image of every $\tilde{g}(1,2)^*$ -closed (resp. $\tilde{g}(1,2)^*$ open) set in X is $\tilde{g}(1,2)^*$ -closed (resp. $\tilde{g}(1,2)^*$ -open) of Y.

A bijective function $f: (X, \tau 1, \tau 2) \longrightarrow (Y, \sigma 1, \sigma 2)$ is called an \tilde{g} (1,2)*-homeomorphism if f is both \tilde{g} (1,2)*open and \tilde{g} (1,2)*-continuous.

Theorem 3.2

Every $(1,2)^*$ -homeomorphism is $\tilde{g}(1,2)^*$ -homeomorphism.

Proof

Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be $(1,2)^*$ homeomorphism. Then f is bijective, $(1,2)^*$ -open and $(1,2)^*$ continuous function. Let U be an $\tau_{1,2}$ - open set in X. Since f is $(1,2)^*$ -open function, f(U) is an $\sigma_{1,2}$ - open set in Y. Every $\tau_{1,2}$ - open set is \tilde{g} $(1,2)^*$ -open and hence f(U) is \tilde{g} $(1,2)^*$ -open in Y. This implies f is \tilde{g} $(1,2)^*$ -open. Let V be a $\sigma_{1,2}$ - closed set in Y. Since f is $(1,2)^*$ -continuous, f ¹(V) is $\tau_{1,2}$ - closed in X. Thus f¹(V) is \tilde{g} $(1,2)^*$ -closed in X and therefore, f is \tilde{g} $(1,2)^*$ -continuous. Hence, f is an \tilde{g} $(1,2)^*$ -homeomorphism.

Remark 3.3

The converse of Theorem 3.2 need not be true as shown in the following example.

Example 3.4

Let X = {a, b, c}, $\tau_1 = \{\phi, X\}$ and $\Box 2 = \{\phi, X, \{a, b\}\}$. Then the sets in $\{\phi, X, \{a, b\}\}$ are called $\tau_{1,2} - open$ and the sets in $\{\phi, X, \{c\}\}$ are called $\tau_{1,2} - closed$. Also the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called \tilde{g} (1,2)*closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called \tilde{g} (1,2)*-open in X. Let Y = {a, b, c}, $\sigma 1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}$ are called $\sigma_{1,2} - open$ and the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\sigma_{1,2} - closed$. Also the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, c\}\}$ are called \tilde{g} (1,2)*-closed in Y and the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, c\}\}$ are called \tilde{g} (1,2)*-closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ are called \tilde{g} (1,2)*-open in Y. Let f : (X, $\tau 1, \tau 2$) \rightarrow (Y, $\sigma 1, \sigma 2$) be the identity function. Then f is a \tilde{g} (1,2)*-homeomorphism but f is not a (1,2)*homeomorphism.

Proposition 3.5

For any bijective function $f: (X, \tau 1, \tau 2) \rightarrow (Y, \sigma 1, \sigma 2)$ the following statements are equivalent.

- (i) $F^{-1}: (Y, \sigma 1, \sigma 2) \rightarrow (X, \tau 1, \tau 2)$ is $\tilde{g}(1,2)^*$ -continuous function.
- (ii) f is a \tilde{g} (1,2)*-open function.
- (iii) f is a \tilde{g} (1,2)*-closed function.

Proof

(i) ⇒ (ii): Let U be an τ_{1,2} - open set in X. Then X - U is τ_{1,2} - closed in X. Since f¹ is *g* (1,2)*- continuous, (f¹)⁻¹(X - U) is *g* (1,2)*-closed in Y. That is f(X - U) = Y - f(U) is *g* (1,2)*-closed in Y. This implies f(U) is *g* (1,2)*-open in Y. Hence f is *g* (1,2)*-open function.

(ii) \Rightarrow (iii): Let F be a $\tau_{1,2}$ - *closed* set in X. Then X -F is $\tau_{1,2}$ - *open* in X.Since f is \tilde{g} (1,2)*- open, f(X - F) is \tilde{g} (1,2)*-open set in Y. That is Y - f(F) is \tilde{g} (1,2)*-open in Y. This implies that f(F) is $\tilde{g}(1,2)^*$ -closed in Y. Hence f is $\tilde{g}(1,2)^*$ -closed. (iii) \Rightarrow (i): Let V be a $\tau_{1,2}$ - closed set in X. Since f is $\tilde{g}(1,2)^*$ -closed function, f(V) is $\tilde{g}(1,2)^*$ -closed in Y. That is (f-1)-1(V) is $\tilde{g}(1,2)^*$ -closed in Y. Hence f-1 is $\tilde{g}(1,2)^*$ -continuous.

Proposition 3.6

Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a bijective and \tilde{g} (1,2)*-continuous function. Then the following statements are equivalent:

(i) f is a \tilde{g} (1,2)*-open function.

(ii) f is a \tilde{g} (1,2)*-homeomorphism.

(iii) f is a \tilde{g} (1,2)*-closed function.

Proof

(i) \Rightarrow (ii): Let f be a \tilde{g} (1,2)*-open function. By hypothesis, f is bijective and \tilde{g} (1,2)*-continuous. Hence f is a \tilde{g} (1,2)*-homeomorphism.

(ii) \Rightarrow (iii): Let f be a \tilde{g} (1,2)*-homeomorphism. Then f is \tilde{g} (1,2)*-open. By Proposition 3.5, f is \tilde{g} (1,2)*-closed function.

(ii) \Rightarrow (i): It is obtained from Proposition 3.5.

Theorem 3.7

Every $(1,2)^*$ - α -homeomorphism is \widetilde{g} $(1,2)^*$ -homeomorphism

Proof

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a $(1,2)^{*}-\alpha$ homeomorphism. Then f is bijective, $(1,2)^{*}-\alpha$ -irresolute and pre- $(1,2)^{*}-\alpha$ -closed. Let F be $\tau_{1,2} - closed$ in X. Then F is $(1,2)^{*}-\alpha$ -closed in X. Since f is pre- $(1,2)^{*}-\alpha$ -closed, f(F) is $(1,2)^{*}-\alpha$ -closed in Y. Every $(1,2)^{*}-\alpha$ -closed set is $\tilde{g}(1,2)^{*}$ closed and hence f(F) is $\tilde{g}(1,2)^{*}$ -closed in Y. This implies f is $\tilde{g}(1,2)^{*}$ -closed function. Let V be a $\sigma_{1,2} - closed$ set of Y. Thus V is $(1,2)^{*}-\alpha$ -closed in Y. Since f is $(1,2)^{*}-\alpha$ irresolute $f^{1}(V)$ is $(1,2)^{*}-\alpha$ -closed in X. Thus $f^{1}(V)$ is \tilde{g} $(1,2)^*$ -closed in X. Therefore f is \tilde{g} $(1,2)^*$ -continuous. Hence f is a \tilde{g} $(1,2)^*$ -homeomorphism.

Remark 3.8

The following Example shows that the converse of Theorem 3.7 need not be true

Example 3.9

Let X = {a, b, c}, $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, X, \{a\}\}$. Then the sets in $\{\phi, X, \{a\}\}$ are called $\tau_{1,2}$ – *open* and the sets in $\{\phi, X, \{b, c\}\}$ are called $\tau_{1,2}$ – *closed*. Also the sets in $\{$ ϕ X, {b}, {c}, {a, b}, {a, c}, {b, c} are called \widetilde{g} (1,2)*closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a$ c}} are called \tilde{g} (1,2)*-open in X. Moreover, the sets in { ϕ , X, $\{a\}$, $\{a, b\}$, $\{a, c\}$ are called $(1,2)^*-\alpha$ -closed in X and the sets in $\{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ are called $(1,2)^*$ - α -open in X. Let $Y = \{a, b, c\}, \sigma 1 = \{\phi, Y\}$ and $\sigma 2 = \{\phi, Y, \{a, b\}\}$. Then the sets in $\{\phi, Y, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{a, b\}\}$ ϕ , Y, {c}} are called σ 1,2-closed. Also the sets in { ϕ , Y, {c}, {a, c}, {b, c}} are called \tilde{g} (1,2)*-closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ are called \widetilde{g} (1,2)*-open in Y. Moreover, the sets in $\{\phi, Y, \{a, b\}\}$ are called $(1,2)^*-\alpha$ closed in Y and the sets in $\{\phi, Y, \{c\}\}$ are called $(1,2)^*-\alpha$ open in Y. Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity function. Then f is a \widetilde{g} (1,2)*-homeomorphism but f is not a (1,2)*-α-homeomorphism.

Remark 3.10

Next Example shows that the composition of two \tilde{g} (1,2)*-homeomorphisms is not always a \tilde{g} (1,2)*-homeomorphism.

Example 3.11

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{a, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{a, c\}\}$ are called $\tau_{1,2} - open$ and the sets in $\{\phi, X, \{b\}, \{b, c\}\}$ are called $\tau_{1,2} - closed$. Also the sets in $\{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}$ are called \widetilde{g} (1,2)*-closed in X and the sets in $\{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$ are called \widetilde{g} (1,2)*-open in X. Let Y=

 $\{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, Y, \{a\}\}$. Then the sets in $\{\phi, Y, \{a\}\}$ are called $\sigma_{1,2}$ – *open* and the sets in $\{\phi, Y, \{b, c\}\}$ c}} are called $\sigma_{1,2}$ - *closed*. Also the sets in { ϕ , Y, {b}, $\{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called \widetilde{g} (1,2)*-closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ are called \widetilde{g} $(1,2)^*$ -open in Y. Let $Z = \{a, b,c\}, \eta_1 = \{\phi, Z\}$ and $\eta_2 = \{\phi, Z, d\}$ $\{a, b\}\}$. Then the sets in $\{\phi, Z, \{a, b\}\}$ are called $\eta_{1,2}$ – open and the sets in { ϕ , Z, {c}} are called $\eta_{1,2}$ - closed. Also the sets in { ϕ , Z, {c}, {a, c}, {b, c}} are called \tilde{g} (1,2)*-closed in Z and the sets in { ϕ , Z, {a}, {b}, {a, b}} are called \widetilde{g} (1,2)*-open in Z. Let f: (X, τ 1, τ 2) \rightarrow (Y, $\sigma 1$, $\sigma 2$) and g : (Y, σ_1 , σ_2) \rightarrow (Z, η_1 , η_2) be two identity functions. Then both f and g are \tilde{g} (1,2)*homeomorphisms. The set $\{a, c\}$ is $\tau 1, 2$ -open in X, but (g o f $(\{a, c\}) = \{a, c\}$ is not \widetilde{g} (1,2)*-open in Z. This implies that g o f is not \tilde{g} (1,2)*-open and hence g o f is not \tilde{g} (1,2)*homeomorphism.

Theorem 3.12

Every \tilde{g} (1,2)*-homeomorphism is (1,2)*-gshomeomorphism but not conversely.

Proof

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a $\tilde{g}(1,2)^*$ homeomorphism. Then f is a bijective, $\tilde{g}(1,2)^*$ -open and $\tilde{g}(1,2)^*$ -continuous function. Let U be an $\tau_{1,2}$ - open set in X. Then f(U) is $\tilde{g}(1,2)^*$ -open in Y. Every $\tilde{g}(1,2)^*$ -open set is $(1,2)^*$ -gs-open and hence, f(U) is $(1,2)^*$ -gs-open in Y. This implies f is $(1,2)^*$ -gs-open function. Let V be $\sigma_{1,2}$ - closed set in Y. Then f¹(V) is $\tilde{g}(1,2)^*$ -closed in X. Hence f¹(V) is $(1,2)^*$ -gs closed in X. This implies f is $(1,2)^*$ -gs-continuous. Hence f is $(1,2)^*$ -gs homeomorphism.

Remark 3.13

The following Example shows that the converse of Theorem 3.12 need not be true.

Example 3.14

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{a\}\}$ $\{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called $\tau_{1,2}$ - open and the sets in { ϕ , X, {c}, {a, c}, {b, c}} are called $\tau_{1,2}$ – *closed*. Also the sets in { ϕ , X, {c}, {a, c}, {b, c}} are called \tilde{g} (1,2)*- closed in X and the sets in { ϕ , X, $\{a\}, \{b\}, \{a, b\}\}$ are called \tilde{g} (1,2)*-open in X. Moreover, the sets in $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ -gs-closed in X and the sets in { ϕ , X, {a}, {b}, {a, b}, $\{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ -gs-open in X. Let $Y = \{a, b, c\}$ c}, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Moreover, the sets in $\{\phi, Y, \{a\}, \{b, c\}\}$ are called $\sigma_{1,2}$ - open and $\sigma_{1,2}$ – *closed* . Also the sets in { ϕ , Y, {a}, {b, c}} are called \widetilde{g} (1,2)*-closed and \widetilde{g} (1,2)*-open in Y. Moreover, the sets in $\{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ -g-closed and $(1,2)^*$ -gopen in Y. Let $f: (X, \tau_1, \tau_2) \rightarrow$ (Y, σ_1 , σ_2) be the identity function. Then f is a $(1,2)^*$ - gshomeomorphism but f is not a \tilde{g} (1,2)*-homeomorphism.

Remark 3.15

The following Examples show that the concepts of \tilde{g} (1,2)*-homeomorphisms and (1,2)*-g-homeomorphisms are independent of each other.

Example 3.16

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$ ϕ , X, {a, c}}. Then the sets in { ϕ , X, {a}, {a, b}, {a, c}} are called $\tau_{1,2}$ – open and the sets in { ϕ , X, {b}, {c}, {b, c}} are called $\tau_{1,2} - closed$. Also the sets in { ϕ , X, {b}, {c}, {b}, c}} are called \tilde{g} (1,2)*-closed and (1,2)*-g-closed in X. Moreover, the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ are called \widetilde{g} $(1,2)^*$ -open and $(1,2)^*$ -ĝ-open in X. Let Y = {a, b, c}, $\sigma_1 = \{$ ϕ , Y, {b}} and $\sigma_2 = \{\phi, Y, \{a, b\}\}$. Then the sets in $\{\phi, Y, \phi\}$ {b}, {a, b}} are called $\sigma_{1,2}$ – open and the sets in { ϕ , Y, {c}, {a, c}} are called $\sigma_{1,2}$ - *closed*. Also the sets in { ϕ , Y, $\{a\}, \{c\}, \{a, c\}, \{b, c\}\}$ are called \widetilde{g} (1,2)*-closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ are called \widetilde{g} $(1,2)^*$ -open in Y. Moreover, the sets in { ϕ , Y, {c}, {a, c}, {b, c}} are called (1,2)*-g-closed in Y and the sets in { ϕ , Y, {a}, $\{b\}, \{a, b\}\}$ are called $(1,2)^*$ -g-open in Y. Define a function f : $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = b, f(b) = a and f(c) = c. Page | 105

Then f is a \tilde{g} (1,2)*-homeomorphism but f is not a (1,2)*-g-homeomorphism.

Example 3.17

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{a\}\}$ are called $\tau_{1,2} - open$ and the sets in $\{\phi, X, \{b, c\}\}$ are called $\tau_{1,2} - closed$. Also the sets in $\{\phi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called \tilde{g} (1,2)*-closed and (1,2)*-gclosed in X. Moreover, the sets in { $\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ are called \tilde{g} (1,2)*-open and (1,2)*-g-open in X. Let Y = {a, b, c}, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b, c\}\}$ are called \tilde{g} (1,2)*-open in $\mathcal{T}_{1,2} - open$ and $\sigma_{1,2} - closed$. Also the sets in { $\phi, Y, \{a\}, \{b, c\}\}$ are called \tilde{g} (1,2)*-open in Y. Moreover, the sets in $\{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called (1,2)*-gs-closed and \tilde{g} (1,2)*-open in Y. Moreover, the sets in $\{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called (1,2)*-gs-closed and (1,2)*-gs-open in Y. Define a function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = b, f(b) = c, f(c) = a. Then f is a (1,2)*-g-homeomorphism but f is not a \tilde{g} (1,2)*-homeomorphism.

Remark 3.18

 \widetilde{g} (1,2)*-homeomorphisms and (1,2)*-sg-homeomorphisms are independent of each other as shown below.

Example 3.19

The function f defined in Example 3.16 is \tilde{g} (1,2)*homeomorphism but not (1,2)*-sg-homeomorphism.

Example 3.20

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called $\tau_{1,2} - open$ and \tilde{g} (1,2)*-open in X; the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\tau_{1,2} - closed$ and \tilde{g} (1,2)*-closed in X. Also, the sets in $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ are called (1,2)*-sg-closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ are called (1,2)*-sg-open in X. Let Y = {a, b, c}, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b, c\}\}$ are called $\sigma_{1,2} - open$ and

 $\sigma_{1,2}$ - *closed*. Also the sets in { ϕ , Y, {a}, {b, c}} are called \widetilde{g} (1,2)*-closed and \widetilde{g} (1,2)*-open in Y. Moreover, the sets in { ϕ , Y, {a}, {b},{c}, {a, b}, {a, c}, {b, c}} are called (1,2)*-sg-closed and (1,2)*-sg-open in Y. Define a function f: (X, $\tau 1$, $\tau 2$) \rightarrow (Y, $\sigma 1$, $\sigma 2$) by f(a) = b, f(b) = a and f(c) = c. Then f is (1,2)*-sg-homeomorphism but not \widetilde{g} (1,2)*-homeomorphism.

IV. STRONGLY \tilde{g} (1,2)*-HOMEOMORPHISMS

Definition 4.1

A bijection $f : (X, \tau_1, \tau_2 \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be strongly \tilde{g} (1,2)*-homeomorphism if f is \tilde{g} (1,2)*-irresolute and its inverse f^1 is also \tilde{g} (1,2)*-irresolute.

Theorem 4.2

Every strongly \tilde{g} (1,2)*-homeomorphism is \tilde{g} (1,2)*-homeomorphism.

Proof

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be strongly \tilde{g} (1,2)*-homeomorphism. Let U be $\tau_{1,2}$ – open in X. Then U is \tilde{g} (1,2)*-open in X. Since f^1 is \tilde{g} (1,2)*-irresolute, $(f^1)^{-1}(U)$ is \tilde{g} (1,2)*-open in Y. That is f(U) is \tilde{g} (1,2)*-open in Y. This implies f is \tilde{g} (1,2)*-open function. Let F be a $\sigma_{1,2}$ – closed in Y. Then F is \tilde{g} (1,2)*-closed in Y. Since f is \tilde{g} (1,2)*-irresolute, f-1(F) is \tilde{g} (1,2)*-closed in X. This implies f is \tilde{g} (1,2)*-continuous function. Hence f is \tilde{g} (1,2)*-homeomorphism.

Remark 4.3

The following Example shows that the converse of Theorem 4.2 need not be true.

Example 4.4

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{a, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{a, c\}\}$ are called $\tau_{1,2}$ – *open* and the sets in $\{\phi, X, \{b\}, \{b, c\}\}$ are called $\tau_{1,2}$ – *closed*. Also the sets in $\{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, Page | 106$

c}} are called \tilde{g} (1,2)*-closed in X and the sets in { ϕ , X, {a}, {c}, {a, b}, {a, c}} are called \tilde{g} (1,2)*-open in X. Let Y = {a, b, c}, $\sigma 1 = {\phi, Y, {a}}$ and $\sigma 2 = {\phi, Y}$. Then the sets in { ϕ , Y, {a}} are called $\sigma_{1,2}$ – open and the sets in { $\phi, Y,$ {b, c}} are called $\sigma_{1,2}$ – closed. Also the sets in { $\phi, Y,$ {b}, {c}, {a, b}, {a, c}, {b, c}} are called \tilde{g} (1,2)*-closed in Y and the sets in { $\phi, Y, {a}, {b}, {c}, {a, b}, {a, c}$ are called \tilde{g} (1,2)*-open in Y. Let f: (X, τ_1, τ_2) \rightarrow (Y, σ_1, σ_2)be the identity function. Then f is a \tilde{g} (1,2)*-homeomorphism but f is not a strongly \tilde{g} (1,2)*-homeomorphism.

Theorem 4.5

The composition of two strongly \tilde{g} (1,2)*homeomorphisms is a strongly \tilde{g} (1,2)*-Homeomorphism.

Proof

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2)$ \rightarrow (Z, η 1, η 2) be two strongly \tilde{g} (1,2)*-homeomorphisms. Let F be a \tilde{g} (1,2)*-closed set in Z. Since g is \tilde{g} (1,2)*irresolute, g⁻¹(F) is \widetilde{g} (1,2)*-closed in Y. Since f is a \widetilde{g} $(1,2)^*$ -irresolute, f¹(g⁻¹(F)) is \widetilde{g} (1,2)*-closed in X. That is (g o f)-1(F) is \widetilde{g} (1,2)*-closed in X. This implies that g of : (X, $\tau 1, \tau 2) \rightarrow (Z, \eta 1, \eta 2)$ is $\widetilde{g} (1,2)^*$ -irresolute. Let V be a \widetilde{g} $(1,2)^*$ -closed in X.Since f-1 is a $\widetilde{g}(1,2)^*$ -irresolute, $(f^1)^{-1}(V)$ is \tilde{g} (1,2)*-closed in Y. That is f(V) is \tilde{g} (1,2)*-closed in Y. Since g⁻¹ is a \widetilde{g} (1,2)*-irresolute, (g-1)-1(f(V)) is \widetilde{g} (1,2)*closed in Z. That is g(f(V)) is $\tilde{g}(1,2)^*$ -closed in Z. So, (g o f)(V) is \tilde{g} (1,2)*-c losed in Z. This implies that ((g o f)-1)-1(V) is \widetilde{g} (1,2)*-closed in Z. This shows that (g o f)⁻¹ : (Z, $\eta 1, \eta 2) \rightarrow (X, \tau 1, \tau 2)$ is \tilde{g} (1,2)*-irresolute. Hence g o f is a strongly \widetilde{g} (1,2)*- homeomorphism. We denote the family of all strongly \widetilde{g} (1,2)*-homeomorphisms from a bitopological space $(X, \tau 1, \tau 2)$ onto itself by $s \tilde{g}(1,2)^* \rightarrow h(X)$.

Theorem 4.6

The set $s \tilde{g}$ (1,2)*-h(X) is a group under composition of functions.

Proof

By Theorem 4.5, g o fes \tilde{g} (1,2)*-h(X) for all f, g ε s \tilde{g} (1,2)*-h(X). We know that the composition of functions is associative. The identity function belonging to s \tilde{g} (1,2)*-h(X) serves as the identity element. If f ε s \tilde{g} (1,2)*-h(X), then f-1 ε s \tilde{g} (1,2)*-h(X) such that f o f¹ = f¹ o f = I and so inverse exists for each element of s \tilde{g} (1,2)*-h(X). Hence s \tilde{g} (1,2)*-h(X) is a group under the composition of functions.

Theorem 4.7

Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a strongly \tilde{g} (1,2)*-homeomorphism. Then f induces an (1,2)*isomorphism from the group $s \tilde{g}$ (1,2)*-h(X) onto the group s \tilde{g} (1,2)*-h(Y).

Proof

Using the function f, we define a function $f : s \tilde{g}$ (1,2)*-h(X) $\rightarrow s \tilde{g}$ (1,2)*-h(Y) by $\theta_f(k) = f \circ k \circ f^1$ for every $k \varepsilon s \tilde{g}$ (1,2)*-h(X). Then θ_F is a bijection. Further, for all k1, k2 $\varepsilon s \tilde{g}$ (1,2)*-h(X), $\rightarrow f(k1 \circ k2) = f \circ (k1 \circ k2) \circ f^1 = (f \circ k1 \circ f^1) \circ (f \circ k2 \circ f^{-1}) = \theta_f (k1) \circ \theta_f (k2)$. Therefore θ_f is an (1,2)*-isomorphism induced by f.

Remark 4.8

The concepts of strongly \tilde{g} (1,2)*-homeomorphisms and (1,2)*- α -homeomorphisms are independent notions as shown in the following examples.

Example 4.9

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \}$ and $\tau_2 = \{\phi, X, \{a, b\}\}$ are called $\tau_{1,2}$ – *open* and the sets in $\{\phi, X, \{a, b\}\}$ are called $\tau_{1,2}$ – *closed*. Also the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called \tilde{g} (1,2)*- closed in X and the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called \tilde{g} (1,2)*-open in X. Let Y = {a, b, c}, $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{b\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$ are called σ_1 ,2-open and (1,2)*- α -open; and the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, c\}\}$ are called

 $σ_{1,2}$ -closed and $(1,2)^*-α$ -closed in Y. Also the sets in {φ, Y, {c}, {a, c}, {b, c}} are called \tilde{g} (1,2)*-closed in Y and the sets in {φ, Y,{a}, {b}, {a, b}} are called \tilde{g} (1,2)*-open in Y. Let f: (X, τ1, τ2) → (Y, σ1, σ2) be the identity function. Then f is a strongly \tilde{g} (1,2)*-homeomorphism but f is not (1,2)*-α-homeomorphism.

Example 4.10

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{a\}\}$ $\{a, b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{a, b\}\}$ are called $\tau_{1,2}$ open and the sets in $\{\phi, X, \{c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Also the sets in $\{\phi, X, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ are called \widetilde{g} $(1,2)^*$ -closed in X and the sets in { ϕ , X, {a}, {b}, {a, b}, {a, c}} are called $\tilde{g}(1,2)^*$ -open in X. Moreover, the sets in { ϕ , X, {b}, {c}, {b, c}} are called $(1,2)^*-\alpha$ -closed in X and then sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ are called $(1,2)^*$ - α -open in X. Let Y = {a, b, c}, $\sigma 1 = \{\phi, Y\}$ and $\sigma 2 = \{\phi, Y, \{a\}\}$. Then the sets in $\{\phi, Y, \{a\}\}$ are called σ 1,2-open and the sets in { ϕ , Y, {b, c}} are called $\sigma_{1,2}$ -closed. Also the sets in { ϕ , Y, {b}, {c}, {a, b}, {a, c}, {b, c}} are called \tilde{g} (1,2)*-closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}\}$ are called \widetilde{g} (1,2)*-open in Y. Moreover, the sets in { ϕ , Y, {b}, $\{c\}, \{b, c\}\}$ are called $(1,2)^*$ - α -closed in Y and the sets in $\{\phi\}$ $,Y,\{a\},\{a, b\},\{a, c\}\}$ are called $(1,2)^*-\alpha$ -open in Y. Let f:(X, A) $\tau 1, \tau 2) \rightarrow (Y, \sigma 1, \sigma 2)$ be the identity function. Then f is a $(1,2)^*$ - α -homeomorphism but not strongly \tilde{g} $(1,2)^*$ homeomorphism.

Definition 4.11

A bijective function $f: (X, \tau 1, \tau 2) \rightarrow (Y, \sigma 1, \sigma 2)$ is called $(1,2)^*$ -gchomeomorphism if f is $(1,2)^*$ -gc-irresolute and f-1 is $(1,2)^*$ -gc-irresolute.

Remark 4.12

The concepts of strongly $\tilde{g}(1,2)^*$ -homeomorphisms and $(1,2)^*$ -gchomeomorphisms are independent of each other as the following examples show.

Example 4.13

Let X = {a, b, c}, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{a\}\}$ $\{a, b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{a, b\}\}$ are called $\tau_{1,2}$ open and the sets in $\{\phi, X, \{c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Also the sets in $\{\phi, X, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ are called \tilde{g} $(1,2)^*$ -closed in X and the sets in { ϕ , X, {a}, {b}, {a, b}, {a, c}} are called \tilde{g} (1,2)*-open in X. Moreover, the sets in { ϕ , X, $\{c\}$, $\{a, c\}$, $\{b, c\}$ are called $(1,2)^*$ -g-closed in X and the sets in { ϕ , X, {a}, {b}, {a, b}} are called (1,2)*-g-open in X. Let Y = {a, b, c}, $\sigma 1 = \{\phi, Y, \{b\}, \{a, b\}\}$ and $\sigma 2 = \{\phi, Y, \{b\}, \{a, b\}\}$ $\{a\}, \{a, c\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ are called $\sigma_{1,2}$ -open and the sets in { ϕ , Y, {b}, {c}, {a, c}, {b, c}} are called σ 1,2-closed. Also the sets in { ϕ , Y, {b}, {c}, $\{a, c\}, \{b, c\}\}$ are called \tilde{g} (1,2)*- closed and (1,2)*-g-closed in Y and the sets in $\{\phi, Y, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ are called \tilde{g} (1,2)*-open and (1,2)*-g-open in Y. Let f : (X, $\tau 1, \tau 2$) \rightarrow (Y, σ 1, σ 2) be the identity function. Then f is a strongly \tilde{g} $(1,2)^*$ -homeomorphism but not $(1,2)^*$ -gchomeomorphism.

Example 4.14

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{a\}\}$ {b}}. Then the sets in { ϕ , X, {a}, {b}, {a, b}} are called τ_{12} open and the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\tau_{1,2}$ closed. Also the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called \widetilde{g} (1,2)*- closed and (1,2)*-g-closed in X, and the sets in { ϕ , X, {a}, {b}, {a, b}} are called \tilde{g} (1,2)*-open and (1,2)*-gopen in X. Let $Y = \{a, b, c\}, \sigma 1 = \{\phi, Y, \{a\}\}$ and $\sigma 2 = \{\phi, f\}$ Y, {a, b}}. Then the sets in { ϕ , Y, {a}, {a, b}} are called σ 1,2-open and the sets in { ϕ , Y, {b}, {c}, {a, c}, {b, c}} are c}} are called \tilde{g} (1,2)*-closed in Y and the sets in { ϕ , Y, $\{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ are called \tilde{g} (1,2)*-open in Y. Moreover, the sets in $\{\phi, Y, \{c\}, \{a, c\}, \{b, c\}\}$ are called $(1,2)^*$ -g-closed in Y and the sets in { ϕ , Y, {a}, {b}, {a, b}} are called $(1,2)^*$ -g-open in Y. Let $f: (X, \tau 1, \tau 2) \rightarrow (Y, \sigma 1, \tau 2)$ σ^2) be the identity function. Then f is a $(1,2)^*$ -gchomeomorphism but not strongly \tilde{g} (1,2)*-homeomorphism.

V. CONCLUSION

Topology as a branch of mathematics can be formally defined as the study of qualitative properties of certain objects that are invariant under a certain kind of transformation especially those properties that are invariant under a certain kind of equivalence and it is study of those properties of geometric configurations which remain invariant when these configurations are subjected to one-to-one bicontinuous transformation or homeomorphisms. Topology operates with more general concepts that anlaysis. Differential properties of a given transformation are non essential for topology but bicontinuity is essential. As a consequence, topology is often suitable for the solution of pproblems to which anlaysis cannot give the answer. In this paper I introduced $\tilde{g}(1,2)^*$ closed maps, $\tilde{g}(1,2)^*$ -open maps, $\tilde{g}(1,2)^{**}$ -closed maps and $\tilde{g}(1,2)^{**}$ -open maps in bitopological spaces and obtain certain characterization of these classes of maps.

REFERENCES

- [1] Dharmalingam.K.M,Thamilisai.A,Ravi.O, $\tilde{g}(1,2)^*$ -Closed and $\tilde{g}(1,2)^*$ -Open sets in Bitopological spaces,
- [2] Thamilisai.A, $\tilde{g}(1,2)^*$ -Closed and $\tilde{g}(1,2)^*$ -Open maps in Bitopological spaces,
- [3] Maki, H., Devi, R. and Balachandran, K.: Associated topologies of generalized α -closed sets and α generalized closed sets, Mem. Fac. Sci.Kochi. Univ. Ser. A. Math., 15 (1994), 51-15.
- [4] Veera kumar, M. K. R. S.: ĝ-closed sets in topological spaces, Bull. Allah. Math. Soc., 18 (2003), 99-112.
- [5] Zbigniew Duszynski, Rose Mary, S. and Lellis Thivagar, M.: Remarks on αĝhomeomorphisms,a. Math. Maced, 7 (2009), 13-20.
- [6] Devi, R., Balachandran, K. and Maki, H.: Semigeneralized closed maps and generalized semi-closed maps, Mem. Fac. Kochi Univ. Ser. A. Math., 14 (1993), 41-54.
- [7] Antony Rex Rodrigo, J., Ravi, O., Pandi, A. and Santhana, C. M.: On (1,2)*-s-normal spaces and pre-(1, 2)*-gs-closed functions, International Journal of Algorithms, Computing and Mathematics, 4(1) (2011), 29-42.

- [8] Duszynski, Z., Jeyaraman, M., Sajan Joseph, M., Lellis Thivagar, M. and Ravi, O.: A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4 (5) (2014), 215-224.
- [9] Jafari, S., Lellis Thivagar, M. and Nirmala Mariappan.: On (1,2)*-αĝ-closed sets, J. Adv. Math. Studies, 2(2) (2009), 25-34.
- [10] Kayathri, K., Ravi, O., Thivagar, M. L. and Joseph Israel, M.: Decompositions of (1,2)*-rg-continuous maps in bitopological spaces, Antarctica J. Math., 6(1) (2009), 13-23.
- [11] Lellis Thivagar, M., Ravi, O. and Abd El-Monsef, M. E.: Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc., 16(1) (2008),17-25.
- [12] Ravi, O., Thivagar, M. L. and Hatir, E.: Decomposition of $(1,2)^*$ -continuity and $(1,2)^*$ α -continuity, Miskolc Mathematical Notes., 10(2) (2009),115-171.
- [13] Ravi, O., Kamaraj, M., Pandi, A. and Kumaresan, K.:
 (1,2)*- g -closed and (1,2)*- g -open maps in bitopological spaces, International Journal of Mathematical Archive, 3(2) (2012), 586-594.
- [14] Ravi, O., Ekici, E. and Lellis Thivagar, M.: On (1,2)*sets and decompositions of bitopological (1,2)*continuous mappings, Kochi J. Math., 3 (2008),181-189.
- [15] Ravi, O., Kayathri, K., Thivagar, M. L. nd Joseph Israel, M.: Mildly (1,2)*-normal spaces and some bitopological functions, Mathematical Bohemica,135(1) (2010), 1-1