
IJSART - Volume 2 Issue 10 –OCTOBER 2016 ISSN [ONLINE]: 2395-1052

Page | 411 www.ijsart.com

Survey on Secure Web Mail System and File Sessions

Chethan K S1, Ravi Kumar V G2
1, 2 Department of CSE

1, 2 GSSSIETW, Mysuru

Abstract- In this paper we study the evolution of C

programming in the Unix operating system. We extract,

aggregate, and synthesize metrics from snapshots obtained

from an artificial software configuration management

repository tracking the evolution of the Unix operating system

over four decades. This paper describes a new technique for

analyzing dynamic file usage patterns based upon classification

of file sessions. A file session is defined to be the set or

operations on a given file from the moment it is opened until the

moment it is closed. A safe and stable webmail is a major

component of office automation. However because of the low

security, its development in E-commerce and E-government is

limited greatly. This text introduces the technical framework

and working principles of a secure webmail system based on

FreeBSD UNIX together with the problems of stability and

security of an enterprise mail system.

Keywords- FreeBSD UNIX, webmail

I. INTRODUCTION

Tracking long-term progress in engineering allows us

to take stock of things we have achieved, appreciate the factors

that led to them, and set realistic goals for where we want to go.

Specific factors that drive long term progress in programming

practices include the affordances and requirements of computer

architecture, programming languages, development

frameworks, and compiler technology, the ergonomics of

interfacing devices, programming guidelines, processing

memory and speed, and social conventions. The objective of

this work is to study, in view of these factors, the evolution of

programming practice in the context of the Unix operating

system. Given the hypothesis that the structure and internal

quality attributes of a working, non-trivial software artifact will

represent first and foremost the engineering requirements of its

construction [1], the results can also indicate areas where

developers rationally

allocated improvement effort and areas where

developers did not see a reason to invest. This paper

describes a technique for organizing file system trace

data in a way that highlights the distinctions between different

styles of file use. The technique revolves around the concept of

a file session. A file session is defined as the entire set of

operations on a given file between the open operation and the

corresponding close operation. By analyzing this set of

operations as a group, it is possible to discover patterns which

are not otherwise obvious. For example, a given session might

open a file for writing, position the write head at the current end

of the file, write some data sequentially, and then close the file.

The rapid development of modern network technology, in

particular, the increasing popularity of the Internet promotes all

kinds of network application services [2]. The email is an

important service of Internet, and it being a threat to security is

also growing. In recent years, Webmail has good usability and

manageability, but its safety is not high, therefore it has not

been massively applied. This paper will introduce a high safety,

high stability, easy management, easy to use and has the anti-

spam and anti-virus function of large security Web Mail system

[3].

II. METHODS

Our study is based on a synthetic software

configuration management repository tracking the long term

evolution of the Unix operating system[16]. At successive time

points of significant releases we process the source code with a

custom-developed tool to extract a variety of metrics for each

file. We then synthesize these metrics into values that are

related to the internal code quality of the whole system, and

analyze the results over time using established statistical

techniques. The primary sources of the material include source

code snapshots of early released versions, which were obtained

from the Unix Heritage Society archive, the CD-ROM images

containing the full source archives of Berkeley’s Computer

Science Research Group (CSRG), the Old Linux site, and the

FreeBSD archive. These snapshots were merged with the

CSRG SCCS repository, the FreeBSD 1 CVS repository, and

the Git mirror of modern FreeBSD development. This material

formed the basis for constructing a synthetic Git repository,

which allows the efficient retrieval and processing of the Unix

source code covering a period of 44 years [4]. We addressed the

difficulty of parsing C source code without access to the

original compilation environment by extending and using our

cmcalc1 open source tool, which efficiently calculates a variety

of C code quality metrics, without requiring full access to the

compilation environment’s parameters. The tool’s operation is

based on state machine logic [5], and will therefore produce

reasonably accurate results without requiring access to header

files and the like. The cmcalc tool calculates size, language

IJSART - Volume 2 Issue 10 –OCTOBER 2016 ISSN [ONLINE]: 2395-1052

Page | 412 www.ijsart.com

feature, code style, and commenting metrics; see the tool’s

documentation and reference [6] for more details.

Analysis was performed on three traces of UNIX

system activity collected by Ousterhout and his students at

Berkeley in the spring of 1985 [7]. The traces were produced

by logging every system call which affected the file system.

The following log entries were of interest to us [15].

• File opens and creates, which mark session

beginnings. There are also-two operations which may be

performed as side effects when the file is opened: the file may

be truncated to zero length (truncate mode) or the write head

may be positioned to the end of the file (append mode).

• File closes, which mark session ends. The

read/write head position is recorded when the file is closed.

• Seek operations, which explicitly change the

position of the file's read/write head; both the old and new head

positions are recorded

• Read and write data transfer operations were

not recorded on the log, but could be inferred by examining

changes in the file's read/write head position.

• Truncate operations on open files, which

change the file's length.

Unlike Ousterhout, we were not interested in the file

reads corresponding to program loading (e.xecs), since we

assumed that frequently executed programs would be resident

on the workstation's disk. More detailed information about the

data maintained in the trace log may be found in Ousterhout's

paper[10]. The three machines from which the traces were

taken were used primarily for document preparation and

program development (the machines named A5 and E3) and

computer-aided design (machine C4). Analysis was performed

on the same three traces analyzed by Ousterhout to allow easy

comparison of our results with his. Each trace covers

approximately three weekdays and contains between 733 000

and just over a million event records which constitute between

233 000 and 358 000 complete file sessions [11]. Because the

system was not quiescent when tracing was started and stopped,

each trace also contains a tiny number of incomplete sessions,

which were ignored. Before analysis is begun, our technique

requires that one postulate a set of access-style categories, using

intuition and observations. It may be necessary to repeat this

process several times to develop an appropriate set of

categories.

The final set of categories used for this analysis was as

follows[15].

• Read Only: The file is not modified

• NewData: The file is created from scratch or

by completely overwriting an existing file. The latter may occur

if the file is written sequentially from the beginning past its

previous end-of-file, or if it is truncated to zero length and

before data is written into it. Either way, none of the old

contents of the file is retained.

• Modified: The file is modified in some

arbitrary way. Database updates would fall into this category.

All sessions in which the file is read as well as written were

placed in this category.

• Flag: No data is written. The file starts empty,

ends empty, and is empty in between.

• Append: New data is added to the end of the

file. The old contents of the file remain untouched.

• Delete Body: The file is truncated to zero

length and left empty.

• Temp: The file starts empty and ends empty

but some data resides in the file in between. (No sessions of this

type were encountered.)

 Flag sessions result from the use of the file system for

synchronization. Older versions of UNIX did not provide file

locks as a primitive, and some applications use the existence of

a file with a certain name as a lock. (No attempt is ever made to

read the flag file itself; it exists solely to cause certain

operations on the directory to fail.) Although we were familiar

with this locking convention, we did not expect to find that it

was used so frequently[12]. We made flag sessions a separate

category when we discovered a large number of files with zero

length in the Modified category. The opposite occurred with

Temp sessions: sessions matching this pattern were expected

but not observed. It is probable that applications which create a

temporary file close the file with data still in it and then delete

the file. Since no temp sessions were encountered they will not

be mentioned again[13].

Fig 1: WebMail System

WebMail is a mail system software technology that

allows users through a ordinary browser (such as IE, Firefox)

to access their mailboxes, its mail processing functions are done

on the server side [8], and it is provided to the mail user by the

form of WEB services as shown in fig 1,[14] with convenient

installation and maintenance features. The e-mail system that

IJSART - Volume 2 Issue 10 –OCTOBER 2016 ISSN [ONLINE]: 2395-1052

Page | 413 www.ijsart.com

we have developed has the following technical characteristics:

using SSL protocol for encryption and decryption in the data

transmission course to ensure the security of user information

and the message in the transmission [9]; using digital signature

mechanism to ensure message integrity, confidentiality, and

non-repudiation; using artificial intelligence technology to

realize the anti-spam and antivirus; With the convenience of

centralized management function, including the domain name

management, user management, certificate management etc.;

mailbox user database and system user database separate

management to improve the security of operating system. The

system mainly uses B / S model, its biggest advantage is easy

to install, easy to maintain, and compatible with C / S mode,

which can still ensure the normal use of other client tools, such

as Foxmail, Outlook.

VI. CONCLUSION

A safe and stable webmail is a major component office

automation. Here we analyze technical framework and working

principles of a secure webmail system based on Free BSD

UNIX and examine the overall pattern of file to analyze file

system dynamics.

REFERENCES

[1] D. Spinellis, “A tale of four kernels,” in ICSE ’08:

Proceedings of the 30th International Conference on

Software Engineering, W. Sch¨afer, M. B. Dwyer, and V.

Gruhn, Eds. New York: Association for Computing

Machinery, May 2008, pp. 381–390.

[2] Kaushik, S., Wijesekera, D., and Ammann, P.: ‘BPEL

Orchestration of secure WebMail’, in Editor (Ed.)^(Eds.):

‘Book BPEL Orchestration of secure WebMail’ (ACM,

2006, edn.), pp. 85-94

[3] Taylor, B.: ‘Sender reputation in a large webmail service’,

in Editor (Ed.)^(Eds.): ‘Book Sender reputation in a large

webmail service’ (2006, edn.), pp.125-127.

[4] “A repository with 44 years of Unix evolution,” in MSR

’15: Proceedings of the 12th Working Conference on

Mining Software Repositories. IEEE, 2015, pp. 13–16.

[5] “Tools and techniques for analyzing product and process

data,” in The Art and Science of Analyzing Software Data,

T. Menzies, C. Bird, and T. Zimmermann, Eds. Morgan-

Kaufmann, 2015, to appear.

[6] S. H. Kan, Metrics and Models in Software Quality

Engineering, 2nd ed. Boston, MA: Addison-Wesley, 2002.

[7] Ousterhout, J. K., Da Costa, H., Harrison, D., Kunze, J. A.,

Kupfer, K. and Thompson, J. G. "A Trace-Driven Analysis

of the UNIX 4.2 BSD File System". Proc. 10th ACM

Symp. on Operating System Prm., December 1985, pp 1 5-

24.

[8] Schatzmann, D., Mühlbauer, W., Spyropoulos, T., and

Dimitropoulos, X.: ‘Digging into HTTPS: flow-based

classification of webmail traffic’, in Editor (Ed.)^(Eds.):

‘Book Digging intoHTTPS: flow-based classification of

webmail traffic’ (ACM, 2010, edn.), pp. 322-327

[9] Yi, Y.H.G.C.S.: ‘An Email System Based on Linux and

Qmail’, Microcomputth Applications, 2001, 6, pp. 109

[10] Burris, C. H. "Selection Matrices: An Algebraic System for

Representing File Versions " MS Thesis (in preparation),

University of Washington, Computer Science Dept.

[11] Lazowska, E . D., ZahOJjan, J . , Cheriton, D. R. and

Zwaenepoel, W. "File Access Performance of Diskless

Workstations" . Trans. Computer Systems 3, Nr 3 (August

1986), pp238-268.

[12] Morris, J. H., Satyanarayanan, M., Conner, M., Howard,

J.,Rosenthal, D. and Smith, F. D. "Andrew: A Distributed

Personal Computing Environment". Comm. of the ACM

28, Nr 3 (March 1986), pp 1 84-201.

[13] Ousterhout, J. K., Da Costa, H., Harrison, D., Kunze, J. A.,

Kupfer, K. and Thompson, J. G. "A Trace-Driven Analysis

of the UNIX 4.2 BSD File System". Proc. 10th ACM

Symp. on Operating System Prm., December 1985, pp 1 5-

24.

[14] Zhang, Yan, and Yuping Yang. "A Secure Webmail

System Based on FreeBSD UNIX." 2013 6th International

Conference on Intelligent Networks and Intelligent

Systems (ICINIS). IEEE, 2013.

[15] Maloney, John H., and Andrew P. Black. "Sessions: A

technique and its application to the UNIX file system."

Data Engineering, 1987 IEEE Third International

Conference on. IEEE, 1987.

[16] Spinellis, Diomidis, Panagiotis Louridas, and Maria

Kechagia. "An exploratory study on the evolution of C

programming in the Unix operating system." 2015

ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement (ESEM). IEEE,

2015.

