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Abstract- In this paper, single layer lamellae composite beam 
is investigated, using higher order Parabolic Shear 
Deformation Theory (PSDT), First Order Shear Deformation 
Theory (FSDT) and Classical Beam Theory (CBT). To 
consider transverse shear deformation effect as well as 
transverse normal strain effect, PSDT and FSDT is taken into 
account. Governing equation of higher order PSDT, FSDT 
and CBT is derived, using principle of virtual work. Analytical 
investigation includes calculation of transverse displacement, 
axial displacement, normal bending stresses and transverse 
shear stresses; varying throughout the depth of beam. Thus, 
results obtained for different aspect ratios and various degree 
of orthotropy, are compared with PSDT,FSDT and CBT under 
thermal load condition. 
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I. INTRODUCTION 
 

Laminated composite beam as a structural element 
are increasingly finding use as primary structural component, 
since its excellent mechanical property of high strength to 
weight and stiffness to weight ratio. Structural elements are 
often subjected to transverse mechanical load or thermal load 
or combination of both loads, i.e., thermo-mechanical load. To 
address the correct response of composite laminated beams 
and plates, when subjected to combine loads, is of prime 
interest to structural analysis. By virtue of their high strength 
to weight ratios and because of their mechanical properties in 
various directions, they can be tailored as per requirements. 
Further, they combine a number of unique properties, 
including corrosion resistance, high damping, temperature 
resistance and low thermal coefficient of expansion. These 
unique properties have resulted in the expanded use of the 
advanced composite materials in structures subjected to severe 
thermal environments. These structures are usually referred as 
high-temperature structures.  

 
Examples are provided by structures used are 

underwater or land based structural elements,  high-speed 
aircraft, spacecraft in aerospace industries, thin-walled 

members of reactor vessels, turbines, as well as the structures 
of future supersonic and hypersonic vehicles, such as high-
speed civil transport and advanced tactical fighters  etc. The 
high velocities of such structures give rise to aerodynamic 
heating, which produces intense thermal stresses that reduces 
the strength of the aircraft structure. Or it is often subjected to 
moderate to severe environment or process based thermal 
loading causing significant thermal stress due to thermal 
gradient across the thickness as well as due to widely different 
thermal properties of adjacent laminas. 

 
Stress fields related to temperature variation often 

represent a contributing factor and, in some cases, are the 
main causes of failure of structures. Hence, their failure 
mechanisms are strongly depends on local effects at layer 
interface where elastic modulii differ widely. Rational design 
of composite and sandwich beams, plates and shell requires 
accurate description of in-plane stress, transverse shear 
stresses and warping and straining of the normal to the mid-
surface, which is given by shear deformation theory.  

 
Thermal stresses in laminated plates using classical 

plate theory and first-order shear deformation theory subjected 
to single sinusoidal thermal load and thermal stresses in a 
laminated plate subjected to a uniformly distributed the 
thermal load using classical plate theory has given by Reddy 
[11]. Thermal stresses in crossply laminated plates subjected 
to a sinusoidal thermal load through the thickness of the plate 
using refined shear deformation theory was studied by Ghugal 
and Kulkarni [5]. Thermal stresses along the bonded interfaces 
in a multilayer beam, caused by the different thermal 
expansion coefficients of the layers, were investigated by Cho 
et al., [2]. The presented theory treated each layer as a higher-
order beam-type plate with appropriate interface and surface 
condition. 

 
CPT, FSDT and the cubic Third Order Theory (TOT) 

for laminated beams and plates under mechanical loading, 
have been covered in detail by Bickford [1] and Reddy [13]. 
Various higher order theories (HOTs) with Taylor series type 
expansions in the thickness direction z for the displacements 
have been developed for composite and sandwich beams 
(Kant et al. [8]-[9]). CPT, FSDT, TOTs and HOTs are ESL 
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theories, in which the functional form of the displacement 
expansions is independent of the material properties of the 
layers, with the number of primary displacement unknowns 
independent of the number of layers. 

 
A new efficient higher order zigzag theory has been 

presented (Kapuria et al., [14]) for thermal stress analysis of 
laminated beams under thermal loads, with modification of the 
third order zigzag model by inclusion of the explicit 
contribution of the thermal expansion coefficient α3 in the 
approximation of the transverse displacement w. The thermal 
field was approximated as piecewise linear across the 
thickness. 

 
E. Correra [3], evaluated the thermal response of 

orthotropic laminated plates on the basis of developed  
classical and mixed approaches  (each layer is considered as a 
single plate for layer wise analysis, while the unknown 
variables are independent of the number of the constitutive 
layers for the ESL cases). Linear up-to fourth-order 
displacement and stress field cases have been implemented to 
derive thermomechanical governing equations.  It has been 
found that the thickness temperature distributions T(z) have a 
significant influence on the accuracy of the considered 
theories. Stresses and displacements for orthotropic, two-layer 
antisymmetric, and three-layer symmetric square cross-ply 
laminated plates subjected to uniformly distributed nonlinear 
thermo-mechanical load were obtained using Trigonometric 
Shear Deformation Theory (TSDT) by author Ghugal and 
Kulkarni [6]. Thermoelastic bending analysis of laminated 
composite plates for pure thermal loading (Sayyad et al., [15]) 
and various higher order shear deformation theories on 
composite and isotropic beam under mechanical loading and 
free vibration has been studied by Sayyad A. S. et al. [16]-
[17]. 

 
A review of displacement and stress based refined 

theories for isotropic and anisotropic laminated beams, with 
their merits and demerits has been presented by Ghugal Y. M. 
and Shimpi R. P. [4] 

  
A study of literature indicates that the research work 

dealing mechanical and thermo-mechanical load has been 
done vastly. But, pure thermal analysis of laminated 
composite beams using refined trigonometric, parabolic and 
exponential shear deformation theories is very scant and is 
still in infancy. 
 
A. Beam Under Consideration 

Global coordinates of beam is as shown in figure, 

 
Fig. 1: Global coordinates of beam 

;0 ax  ;
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Where, x, y, z are Cartesian co-ordinates, ais length, b is width 
and h is the total depth of beam. The beam is subjected to 
single sine thermal load of intensity T(x)varying across the 
depth of beam. 
 
B. Assumptions Made in Theoretical Formulation 
 
1. The in-plane displacement u in x direction consists of two 

parts: 
a) A displacement component analogous to 

displacement in elementary beam theory of bending; 
b) Displacement component due to shear deformation 

which is assumed to be parabolic, sinusoidal, 
hyperbolic and exponential in nature with respect to 
thickness coordinate. 

2. The transverse displacement w in z direction is assumed 
to be a function of x coordinate. 

3. One dimensional constitutive law is used. 
4. The beam is subjected to thermal load only. 
 

II. DISPLACEMENT FIELD 

The displacement field of the present unified refined 
beam theory is given by, 

)()()(),( xzf
x
xwzzxU 




  (2) 

)(),( xwzxW       (3) 

)(.)( 1 xTZxT       (4) 
 
Where, 
u and w = axial and transverse displacements of the beam in x 
and z directions, respectively, 
  = represents the rotation of the cross section of the beam at 
neutral axis (unknown function to be determined), 
T = Thermal load 

)(zf  = function assigned according to the shearing stress 
distribution through the thickness of the beam for different 
shear deformation theory, as stated below: 
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Table 1: Different shear deformation theory and its 
displacement field function )(zf  

Theory Model )(zf  
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First order shear deformation 
theory of Mindlin, 1951 FSDT z  

Classical Plate Theory of 
Kirchhoff   CPT 0 

 
A. Normal Strain and Transverse Shear Strain for Beam: 
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According to one dimensional constitutive law, the 

axial stress normal bending stress and transverse shear stress 
are given by, 
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Where, 

11Q = E = modulus of elasticity 

55Q = G = modulus of rigidity 

x = coefficient of thermal expansion in x direction 

T = Temperature field. 
 

III. GOVERNING EQUATIONS 
 

Governing equations of beam subjected to thermal 
loading by different shear defamation theory is determined by 
putting equation (7), equation (6) and equation (5) in Principle 
of virtual work equation which is stated below, 
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By integrating preceding equation (8) by parts and 

collecting coefficients of w and  terms, the governing 
equations in terms of displacement variables for different 
shear deformation theories are obtained below. Where  is 
variational operator. 

A. Higher Order Parabolic Shear Deformation Theory: 
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B. First Order Shear Deformation Theory: 
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C. Classical Beam Theory 
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D. Elastic Equilibrium Equation: 

 
Two dimensional elastic equilibrium equation is given by 
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The transverse shear stresses are calculated using 

Elastic Equilibrium (EE) equations. In this paper transverse 
shear stresses for CBT is calculated using EE equations, which 
cannot be calculated by Constitutive Relationship (CR). 
 

IV. ILLUSTRATIVE EXAMPLE 
 

A simply supported rectangular beam having length a 
in x-direction is considered. A solution to resulting governing 
equations, which satisfies the associated initial conditions, is 
of the form, 
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Here, mw , m  and mT1 are coefficient  associated 

with translation, rotation and temperature of beam, 
respectively. Sinusoidal pure thermal load is taken in to 
consideration. 
 
Material Property of the beam is given below, 
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V. NUMERICAL RESULTS AND DISCUSSION 

       
  The results are obtained for different degree of 
orthotropy (varying from 1, 2, 10, 25) and various aspect ratio 
a/h (varying from 10, 25, 50, 100) of beam. The results 
obtained are presented in Tables 2 and 3. The results obtained 
for displacements are presented in the non-dimensional 
parameters. The results are presented in the following non 
dimensional form (eq. 19-22), 
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Table 2: Comparison of transverse displacement w  at (x = a / 

2, z = 0) for ESL beam subjected to single sine thermal load 

 

              Table 2 shows value of the normalized transverse 
displacement for various degrees of orthotropy and aspect 
ratio. The investigation of Table 2 and Table 3 reveals that the 
maximum displacement predicted by present PSDT theory is 
in excellent agreement with that of FSDT and CBT which 
consistently underestimates the value of same for all, a/h, and 
the stiffnesses, E1/E2, ratios. It is seen from results that 
displacement does not change with change in degree of 
orthotropy. 
 

Table 3 shows value of the normalized axial 
displacement for various degrees of orthotropy and aspect 
ratio. The investigation of Table 3 reveals that the maximum 
displacement predicted by present PSDT theory is in excellent 
agreement with that of FSDT and CBT. Through thickness 
variation of axial displacements are shown in Figure 2 through 
5. It is seen from results that displacement does not change 
with change in degree of orthotropy but it decreases as aspect 
ratio increases. 
 

Axial displacement u  for a/h = 10 & E1/E2 = 2, a/h = 
25 & E1/E2 = 2, a/h = 50 & E1/E2 = 10, a/h = 100 & E1/E2 = 
25; throughout the depth of beam is shown in fig. (2)-(5). 
 
Table 3: Comparison of axial displacement u  10-3at (x = 0, 
z = h / 2) for ESL beam subjected to single sine thermal load. 
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Fig. 2: Through-thickness variation of axial displacement u  

for E1/E2 = 1  and a/h = 10 
 

 
Fig. 3: Through-thickness variation of axial displacement u  

for E1/E2 = 2  and a/h = 25 
 

 
Fig. 4: Through-thickness variation of axial displacement u  

for E1/E2 = 10  and a/h = 50 

Fig. 5: Through-thickness variation of axial displacement u  
for E1/E2 = 25  and a/h = 100 

 
Table 4: Comparison of normal bending stress x  at (x = a/2, 

z = h / 2) for ESL beam subjected to single sine thermal load 

 
 

Table 4 shows comparison of maximum normal 
bending stress for several values of degree of orthotropy and 
aspect ratios. Figure 6 and Figure 9 show that maximum 
normal bending stress predicted by present theory is in 
excellent agreement with that of other theories.It is seen from 
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table 2 and table 3, displacement is independent of degree of 
orthotropy. But normal bending stresses changes as degree of 
orthotropy and aspect ratio changes. For FSDT and CBT, 
variation of normal bending stresses across the depth of beam 
is, more or less, linear. But it is non-linear for PSDT (as it can 
be seen from fig. (6) to fig. (9)). 

 

 
Fig. 6: Through-thickness variation of normal bending stress 

x for E1/E2 = 1  and a/h = 10 

 

 
Fig. 7: Through-thickness variation of normal bending stress 

x for E1/E2 = 2  and a/h = 25 

 

 
Fig. 8: Through-thickness variation of normal bending stress 

x for E1/E2 = 10  and a/h = 50 

Table 5: Comparison of transverse shear stress  zx at (x = 0, z 

= 0) for ESL beam subjected to single sine thermal load 

 
 

Table 5 shows comparison of maximum transverse 
shear stress for several values of degree of orthotropy and 
aspect ratios. Figure 10 and Figure 13 show that maximum 
normal bending stress predicted by present theory is in 
excellent agreement with that of other theories. Transverse 
shear stress is a function of degree of orthotropy and aspect 
ratio. For PSDT and FSDT, transverse shear stresses are found 
out using Constitutive Relation (CR); and for CBT, Elastic 
Equilibrium (EE) is used. 
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Fig. 9: Through-thickness variation of normal bending stress 

x for E1/E2 = 25  and a/h = 100 

 

 
Fig. 10: Through-thickness variation of transverse shear stress  

zx for E1/E2 = 1  and a/h = 10 

 

Fig. 11: Through-thickness variation of transverse shear stress  

zx for E1/E2 = 2  and a/h = 25 

 
Fig. 12: Through-thickness variation of transverse shear stress  

zx for E1/E2 = 10  and a/h = 50 

 

 
Fig. 13: Through-thickness variation of transverse shear stress  

zx for E1/E2 = 25  and a/h = 100 

 
VI. CONCLUSIONS 

 
1. The beam is subjected to pure thermal load and not 

subjected to transverse mechanical load, therefore the 
transverse and axial displacements predicted by all the 
theories for various Degree of Orthotropy, are more or 
less same.i.e., it is independent of Degree of Orthotropy. 

2. PSDT obviates need of shear correction factor as 
itsatisfies zero transverse shear stress at top and bottom 
ofbeam. FSDT gives constant transverse shear 
stressthroughout depth of beam.Transverse shear stresses 
throughout depth of beam, are calculated by CBT from 
elastic equilibrium equations in terms of stress field of 
CBT. 
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3. The CBT shows same numerical values of transverse 
displacement for different aspect ratios and Degree of 
Orthotropy, due to neglect of shear deformation effect. 

4. Normal bending stresses and transverse shear stresses are 
the function of aspect ratio and Degree of Orthotropy in 
case of beam which is subjected to pure thermal load. 

5. Normal bending stress profile, throughout the depth of the 
beam, calculated by PSDT is non-linear; whereas, it is 
linear for CBT and FSDT. 

6. The parabolic shear deformation theory takes into account 
shear deformationwhich is more predominant in the 
precious analysis of composite beams. Other conventional 
theory neglects the effect of shear deformation, thus the 
results in lagging if accuracy in analysis. 
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