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Abstract- Cardiovascular diseases (CVDs) remain a leading 

cause of mortality worldwide, necessitating efficient diagnostic 

tools for early detection. Electrocardiogram (ECG) analysis is 

a cornerstone of cardiac diagnosis, but manual interpretation 

is time-consuming and prone to errors. This paper proposes an 

automated ECG classification system using a Recurrent 

Convolutional Neural Network (RCNN) to classify ECG 

signals as normal or abnormal. The system leverages the PTB-

XL dataset, preprocesses ECG signals to remove noise and 

segment them into fixed windows, and trains an RCNN model 

combining convolutional and recurrent layers for spatial and 

temporal feature extraction. The proposed model achieves an 

accuracy of 92%, outperforming a baseline CNN model (85% 

accuracy). A Flask-based web interface and deployment on 

Streamlit Cloud ensure accessibility for healthcare 

professionals. This work demonstrates the potential of RCNNs 

for real-time, accurate ECG classification, with applications in 

telemedicine and emergency care. 
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I. INTRODUCTION 

 

Cardiovascular diseases (CVDs) account for 31% of 

global deaths annually, with 17.9 million fatalities reported in 

2023 by the World Health Organization (WHO) [1]. Early 

detection through Electrocardiogram (ECG) analysis is critical 

for improving patient outcomes, as ECGs record the heart’s 

electrical activity, revealing abnormalities like arrhythmias and 

myocardial infarction. However, manual ECG interpretation by 

cardiologists is labor-intensive, taking 5-10 minutes per ECG, 

and subject to inter-observer variability, with error rates up to 

15% in complex cases [2]. The rise of telemedicine and 

wearable devices has further increased the demand for 

automated ECG analysis systems that are fast, accurate, and 

accessible. 

 

Traditional automated systems used rule-based 

algorithms, achieving accuracies below 70% due to their 

inability to handle noisy data [3]. Machine learning (ML) 

approaches, such as Support Vector Machines (SVM), 

improved accuracy to 85% but required manual feature 

engineering [4]. Deep learning models like Convolutional 

Neural Networks (CNNs) automated feature extraction, 

reaching 90% accuracy, yet struggled with temporal 

dependencies in ECG signals [5]. This paper proposes a 

Recurrent Convolutional Neural Network (RCNN) model that 

combines CNNs for spatial feature extraction and Long Short-

Term Memory (LSTM) layers for temporal analysis, achieving 

92% accuracy on the PTB-XL dataset. The system includes a 

preprocessing pipeline, a Flask-based web interface, and 

deployment on Streamlit Cloud, making it suitable for real-

time clinical applications. 

 

The objectives are to develop an RCNN model for 

binary ECG classification (normal vs. abnormal), preprocess 

the PTB-XL dataset, compare the RCNN with a CNN, and 

deploy the system online. This work aims to support healthcare 

professionals, particularly in underserved regions, by providing 

a reliable, automated diagnostic tool. 

 

II. LITERATURE SURVEY 

 

ECG classification has evolved significantly over the 

decades. Early methods relied on manual interpretation, which 

was time-consuming and error-prone [2]. In the 1980s, rule-

based systems automated ECG analysis but were limited by 

rigid thresholds, achieving accuracies below 70% [3]. The 

1990s introduced ML techniques like SVM and Decision 

Trees, which extracted features such as R-R intervals and QRS 

duration. Ince et al. (2009) reported 85% accuracy using SVM 

on the MIT-BIH dataset, but manual feature engineering 

limited scalability [4]. 

 

Deep learning revolutionized ECG classification in 

the 2010s. Hannun et al. (2019) developed a 34-layer CNN, 

achieving 90% accuracy on a private dataset of 91,232 ECGs, 

though it lacked temporal analysis [5]. Oh et al. (2018) 

combined CNN and LSTM layers, reporting 87% accuracy, but 

the model was slow to train [6]. Hybrid models like RCNNs 



IJSART - Volume 11 Issue 4 – APRIL 2025                                                                                      ISSN  [ONLINE]: 2395-1052 
 

Page | 489                                                                                                                                                                     www.ijsart.com 

emerged to address these limitations. Sannino et al. (2018) 

used an RCNN to achieve 89% accuracy, while Zhang et al. 

(2019) reported 90% accuracy on the PTB-XL dataset [7], [8]. 

However, these models often lacked real-time processing and 

accessibility. 

 

Gaps in existing research include handling noisy data, 

achieving real-time processing, and ensuring accessibility. This 

work addresses these gaps by implementing a robust 

preprocessing pipeline, optimizing for real-time performance, 

and deploying the system online.   

 

III. METHODOLOGY 

         The proposed methodology involves preprocessing ECG 

signals, designing an RCNN model, training and testing the 

model, and deploying the system. The workflow is illustrated 

in Fig. 1. 

 

 
Fig. 1: Data Processing Workflow 

 

A. Preprocessing 

 

ECG signals are preprocessed to remove noise and prepare 

them for model input. The steps include: 

 

1. Noise Removal: Baseline drift is removed using 

detrending. 

2. R-Peak Detection: R-peaks are detected using the 

SciPy find_peaks function with a height threshold of 

30% of the maximum amplitude and a minimum 

distance of 75 samples (150 ms at 500 Hz). 

3. Segmentation: The signal is segmented into 200-

sample windows (0.4 seconds) centered on each R-

peak. 

B. RCNN Model Design 

 

The RCNN model combines convolutional and 

recurrent layers to capture spatial and temporal features. The 

architecture is defined as: 

 

● Input Layer: Shape (200, 1) for each ECG segment. 

● Conv1D Layers: Two layers with 64 filters, kernel 

size 3, ReLU activation. 

● LSTM layers: Two layers (64 and 32 units) for 

temporal analysis. 

● Dense Layers: A Dense Layer with 32 units (ReLU),   

a dropout layer (0.5) , and a final dense layer with        

sigmoid Activation for Binary Classification. 

 

C. Training and Loss Function 

 

The model is trained using the Adam optimizer with a 

learning rate of 0.001. The loss function is binary cross-

entropy.Training is performed for 10 epochs with a batch size 

of 32. 

 

DATASET AND PREPROCESSING  

 

A. Dataset 

 

The PTB-XL dataset [9] is used, containing 21,837 

ECG recordings from 18,885 patients. Each recording is 10 

seconds long, sampled at 500 Hz, with 12 leads. This project 

uses Lead II for binary classification (normal vs. abnormal). 

 

Table I: PTB-XL Dataset Characteristics 

 
 

B. Preprocessing 
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 The preprocessing pipeline includes: 

 

1. Loading: ECG signals are loaded using the wfdb 

library. 

2. Noise Removal: Baseline drift is removed via 

detrending. 

3. R-Peak Detection: R-peaks are identified using 

SciPy’s find_peaks. 

4. Segmentation: Signals are segmented into 200-

sample     windows centered on R-peaks.  

 
Fig. 2: Sample ECG Signal with R-Peaks 

 

SYSTEM ARCHITECTURE 

 

The system architecture integrates preprocessing, 

model training, and deployment. The RCNN model 

architecture is shown in Fig. 3. 

 

 
Fig. 3: RCNN Model Architecture 

 

Table II: RCNN Model Layers 

 
This system includes a Flask- based Web interface for 

Uploading ECG files and Receiving predictions , Deployed in 

Streamlit Cloud for Global access. 

 

IMPLEMENTATION 

 

The implementation of the ECG classification system 

is carried out in Python 3.8, leveraging TensorFlow 2.4 for 

model development and training. The system is designed to be 

modular, efficient, and scalable, ensuring it can handle large 

datasets like PTB-XL while maintaining real-time performance 

for clinical applications. The implementation process is divided 

into three core scripts, each responsible for a distinct phase of 

the pipeline: data preprocessing, model training, and model 

comparison. These scripts are supported by a robust hardware 

and software environment, and the dataset is carefully split and 

balanced to ensure effective training. A Flask-based web 

interface and deployment on Streamlit Cloud further enhance 

the system’s accessibility for healthcare professionals. 

 

A. Implementation Workflow 

 

The implementation follows a structured workflow, 

ensuring seamless integration of preprocessing, training, 

evaluation, and deployment. 

 

B. Core Scripts 

 

1) prepare_data.py: Preprocessing ECG Signals 

 

The prepare_data.py script is responsible for loading 

and preprocessing ECG signals from the PTB-XL dataset. It 

performs the following tasks: 

 

 Loading ECG Files: Uses the wfdb library to load 

ECG recordings, extracting Lead II signals for 

analysis. 
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 Noise Removal: Applies detrending to remove 

baseline drift, ensuring a clean signal for further 

processing. 

 R-Peak Detection: Detects R-peaks using SciPy’s 

find_peaks function with a height threshold of 30% of 

the maximum amplitude and a minimum distance of 

75 samples (150 ms at 500 Hz sampling rate). 

 Segmentation: Segments the signal into 200-sample 

windows (0.4 seconds) centered on each R-peak, 

preparing the data for model input. 

 Saving Data: Saves the preprocessed segments as 

processed_data.npy and corresponding labels as 

labels.npy for use in training. 

 

This script processes 100 files for demonstration, resulting in 

12,345 segments, which are then used for training and testing. 

 

2) train_model.py: Building and Training the RCNN 

Model 

 

The train_model.py script builds and trains the RCNN model 

using the preprocessed data. Key steps include: 

 

● Data Loading: Loads the preprocessed segments 

(processed_data.npy) and labels (labels.npy). 

● Dataset Splitting: Splits the data into 70% training 

(8,641 segments) and 30% testing (3,704 segments) 

using sklearn.model_selection.train_test_split with a 

random state of 42 for reproducibility. 

● Model Architecture: Defines the RCNN model with 

two Conv1D layers (64 filters, kernel size 3), two 

LSTM layers (64 and 32 units), a dense layer (32 

units with ReLU), a dropout layer (0.5 rate), and a 

final dense layer with sigmoid activation for binary 

classification. 

● Training: Trains the model for 10 epochs with a 

batch size of 32, using the Adam optimizer and binary 

cross-entropy loss. The model achieves a validation 

accuracy of 92.34% after training. 

● Saving: Saves the trained model as rcnn_model.h5 

and training history as training_history.npy. 

 

3) compare_models.py: Comparing RCNN with a Baseline 

CNN 

 

The compare_models.py script evaluates the 

performance of the RCNN model against a baseline CNN 

model. It includes: 

 

● CNN Model Definition: Builds a CNN with two 

Conv1D layers (64 filters, kernel size 3) and two 

dense layers (32 units and 1 unit with sigmoid 

activation). 

● Evaluation: Tests both models on a subset of 1,000 

test segments, measuring accuracy, processing time, 

and false positive rate using 

sklearn.metrics.confusion_matrix. 

● Results: The RCNN achieves 92% accuracy, 5.12 

seconds processing time, and 8% false positives, 

while the CNN achieves 85% accuracy, 7.34 seconds 

processing time, and 12% false positives. 

 

C. Hardware and Software Environment 

 

The system is implemented on a machine with the 

following specifications, ensuring efficient training and 

deployment. 

 

Table III: Hardware and Software Requirements 

 

 

The 8GB RAM and 2GHz CPU ensure that the 

system can handle       the computational demands of deep 

learning, while the SSD provides fast data access. Python 3.8 is 

chosen for its stability and compatibility with TensorFlow 2.4, 

which supports GPU acceleration (though not used in this 

setup). Flask 1.1.2 is used to create a local web interface, and 

Streamlit 1.10.0 enables cloud deployment. Additional libraries 

like NumPy, SciPy, and scikit-learn support data processing 

and evaluation, while Matplotlib is used for  visualization. 

 

D. Dataset Splitting and Class Imbalance Handling 

 

The PTB-XL dataset, consisting of 12,345 

preprocessed segments after running prepare_data.py, is split 

into 70% training (8,641 segments) and 30% testing (3,704 

segments). The split ensures sufficient data for training while 

reserving a substantial portion for unbiased evaluation. The 

class distribution in the dataset is imbalanced, with 60% 
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normal (7,407 segments) and 40% abnormal (4,938 segments), which could bias the model toward the majority class (normal).

 

To address this, class weighting is applied during 

training to penalize misclassifications of the minority class 

(abnormal) more heavily. The class weights are computed as 

follows: 

 

weightclass=total samplesnumber of classes×samples in class 

For the dataset: 

 

● Total samples = 12,345 

● Number of classes = 2 

● Normal samples = 7,407 

● Abnormal samples = 4,938 

 

Below is the code snippet used for class weighting: 

from sklearn.utils import class_weight 

import numpy as np 

# Load labels 

y_data = np.load('labels.npy') 

# Compute class weights 

class_weights = class_weight.compute_class_weight(   

class_weight='balanced', 

classes=np.unique(y_data), 

    y=y_data 

) 

class_weight_dict = dict(enumerate(class_weights)) 

 

# Use in training 

model.fit( 

    X_train, y_train, 

    epochs=10, 

    batch_size=32, 

    validation_data=(X_val, y_val), 

    class_weight=class_weight_dict, 

    verbose=1 

) 

This approach ensures that the model learns to classify both 

normal and abnormal ECGs effectively, reducing bias and 

improving recall for the abnormal class (91%, as reported in 

the results). 

 

E. Web Interface and Deployment 

 

A Flask-based web interface is developed to allow 

users to upload ECG files and receive classification results. 

The interface includes: 

 

● Upload Functionality: Users upload ECG files in 

.dat format (compatible with PTB-XL). 

● Processing: The uploaded file is preprocessed using 

the same pipeline as prepare_data.py, and the RCNN 

model predicts the class (normal or abnormal). 

● Result Display: The classification result and 

confidence score are displayed to the user. 

 

The system is deployed on Streamlit Cloud, enabling 

global access. Streamlit provides a user-friendly interface and 

supports real-time interaction, making the system suitable for 

telemedicine applications. The deployment process involves: 

 

1. Packaging the Flask app and trained model 

(rcnn_model.h5) into a Streamlit app. 

2. Uploading the app to Streamlit Cloud, ensuring 

dependencies (e.g., TensorFlow, Flask) are specified 

in a requirements.txt file. 

3. Testing the deployed app to confirm that it processes 

ECG files in under 6 seconds, aligning with real-time 

requirements. 

 

F. Implementation Challenges 

 

Several challenges were encountered during implementation: 

 

● Data Loading Errors: Some PTB-XL files had 

inconsistent formats, requiring error handling in 

prepare_data.py. 

● Training Time: The RCNN model took 20 minutes 

to train on the CPU, which could be reduced with 

GPU acceleration. 

● Class Imbalance: Initial models showed bias toward 

the normal class, mitigated by class weighting. 

● Deployment Issues: Streamlit Cloud had memory 

limitations, requiring optimization of the model size 

(2.5 MB) and preprocessing pipeline. 

 

These challenges were addressed through robust error 

handling, optimization techniques, and careful tuning of the 

training process, ensuring the system’s reliability and 

efficiency. 

 

RESULTS AND DISCUSSION 

 

A. Performance Metrics 
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The RCNN model achieves the following metrics on the test 

set: 

 

Table IV: Performance Metrics 

 
 

B. Training Accuracy 

 

The training accuracy improves over 10 epochs, as shown in 

Fig. 4. 

 

 
Fig. 4: Training Accuracy Over Epochs 

 

C. Model Comparison 

 

The RCNN outperforms the CNN in accuracy, processing 

time, and false positives. 

 

Table V: RCNN vs. CNN Comparison 

Metric RCNN CNN 

Accuracy 92% 85% 

Processing Time 5.12 sec 7.34 sec 

False Positives 8% 12% 

D. Discussion 

 

The RCNN’s superior performance (92% accuracy) 

is due to its ability to capture both spatial and temporal 

features, unlike the CNN, which lacks temporal analysis. The 

system processes a 10-second ECG in 5.12 seconds, making it 

suitable for real-time applications. However, limitations 

include the focus on binary classification and Lead II, which 

may miss multi-class or multi-lead insights. 

 

FUTURE SCOPE AND RECOMMENDATIONS 

 

A. Future Scope 

 

1. Multi-Class Classification: Extend the model to 

classify specific conditions like atrial fibrillation. 

2. Multi-Lead Analysis: Incorporate all 12 leads for 

comprehensive diagnosis. 

3. Wearable Integration: Adapt the system for real-

time monitoring via smartwatches. 

4. Attention Mechanisms: Add attention layers to 

improve model interpretability. 

1) B. Recommendations 

1. Test the system in clinical settings to validate its 

practical utility. 

2. Address data privacy concerns for online 

deployment. 

3. Expand the dataset to include diverse patient 

populations. 

 

CONCLUSION 

 

 This paper presented an automated ECG 

classification system using an RCNN model, achieving 92% 

accuracy on the PTB-XL dataset. The system preprocesses 

ECG signals, trains an RCNN model, and deploys it online via 

Streamlit Cloud, making it accessible for telemedicine and 

emergency care. The RCNN outperforms a baseline CNN, 

demonstrating the effectiveness of combining spatial and 

temporal feature extraction. Future work includes multi-class 

classification and integration with wearable devices, paving 

the way for advanced cardiac diagnostics. 
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