
IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 488 www.ijsart.com

ECG Peak Detection Using Deep Learning Approaches

Dr.R.J. Aarthi
1
, Mohammed Mubarak

2
, Mareddy Rajitha

3
,Mohammad Imran

4

1 Assistant Professor, Dept of CSE
2, 3, 4Dept of CSE

1, 2, 3, 4 Bharath Institute of Higher Education and Research

Abstract- Cardiovascular diseases (CVDs) remain a leading

cause of mortality worldwide, necessitating efficient diagnostic

tools for early detection. Electrocardiogram (ECG) analysis is

a cornerstone of cardiac diagnosis, but manual interpretation

is time-consuming and prone to errors. This paper proposes an

automated ECG classification system using a Recurrent

Convolutional Neural Network (RCNN) to classify ECG

signals as normal or abnormal. The system leverages the PTB-

XL dataset, preprocesses ECG signals to remove noise and

segment them into fixed windows, and trains an RCNN model

combining convolutional and recurrent layers for spatial and

temporal feature extraction. The proposed model achieves an

accuracy of 92%, outperforming a baseline CNN model (85%

accuracy). A Flask-based web interface and deployment on

Streamlit Cloud ensure accessibility for healthcare

professionals. This work demonstrates the potential of RCNNs

for real-time, accurate ECG classification, with applications in

telemedicine and emergency care.

Keywords- ECG Classification, Recurrent Convolutional

Neural Network (RCNN), Deep Learning, PTB-XL Dataset,

Cardiac Diagnosis, Telemedicine.

I. INTRODUCTION

Cardiovascular diseases (CVDs) account for 31% of

global deaths annually, with 17.9 million fatalities reported in

2023 by the World Health Organization (WHO) [1]. Early

detection through Electrocardiogram (ECG) analysis is critical

for improving patient outcomes, as ECGs record the heart’s

electrical activity, revealing abnormalities like arrhythmias and

myocardial infarction. However, manual ECG interpretation by

cardiologists is labor-intensive, taking 5-10 minutes per ECG,

and subject to inter-observer variability, with error rates up to

15% in complex cases [2]. The rise of telemedicine and

wearable devices has further increased the demand for

automated ECG analysis systems that are fast, accurate, and

accessible.

Traditional automated systems used rule-based

algorithms, achieving accuracies below 70% due to their

inability to handle noisy data [3]. Machine learning (ML)

approaches, such as Support Vector Machines (SVM),

improved accuracy to 85% but required manual feature

engineering [4]. Deep learning models like Convolutional

Neural Networks (CNNs) automated feature extraction,

reaching 90% accuracy, yet struggled with temporal

dependencies in ECG signals [5]. This paper proposes a

Recurrent Convolutional Neural Network (RCNN) model that

combines CNNs for spatial feature extraction and Long Short-

Term Memory (LSTM) layers for temporal analysis, achieving

92% accuracy on the PTB-XL dataset. The system includes a

preprocessing pipeline, a Flask-based web interface, and

deployment on Streamlit Cloud, making it suitable for real-

time clinical applications.

The objectives are to develop an RCNN model for

binary ECG classification (normal vs. abnormal), preprocess

the PTB-XL dataset, compare the RCNN with a CNN, and

deploy the system online. This work aims to support healthcare

professionals, particularly in underserved regions, by providing

a reliable, automated diagnostic tool.

II. LITERATURE SURVEY

ECG classification has evolved significantly over the

decades. Early methods relied on manual interpretation, which

was time-consuming and error-prone [2]. In the 1980s, rule-

based systems automated ECG analysis but were limited by

rigid thresholds, achieving accuracies below 70% [3]. The

1990s introduced ML techniques like SVM and Decision

Trees, which extracted features such as R-R intervals and QRS

duration. Ince et al. (2009) reported 85% accuracy using SVM

on the MIT-BIH dataset, but manual feature engineering

limited scalability [4].

Deep learning revolutionized ECG classification in

the 2010s. Hannun et al. (2019) developed a 34-layer CNN,

achieving 90% accuracy on a private dataset of 91,232 ECGs,

though it lacked temporal analysis [5]. Oh et al. (2018)

combined CNN and LSTM layers, reporting 87% accuracy, but

the model was slow to train [6]. Hybrid models like RCNNs

IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 489 www.ijsart.com

emerged to address these limitations. Sannino et al. (2018)

used an RCNN to achieve 89% accuracy, while Zhang et al.

(2019) reported 90% accuracy on the PTB-XL dataset [7], [8].

However, these models often lacked real-time processing and

accessibility.

Gaps in existing research include handling noisy data,

achieving real-time processing, and ensuring accessibility. This

work addresses these gaps by implementing a robust

preprocessing pipeline, optimizing for real-time performance,

and deploying the system online.

III. METHODOLOGY

 The proposed methodology involves preprocessing ECG

signals, designing an RCNN model, training and testing the

model, and deploying the system. The workflow is illustrated

in Fig. 1.

Fig. 1: Data Processing Workflow

A. Preprocessing

ECG signals are preprocessed to remove noise and prepare

them for model input. The steps include:

1. Noise Removal: Baseline drift is removed using

detrending.

2. R-Peak Detection: R-peaks are detected using the

SciPy find_peaks function with a height threshold of

30% of the maximum amplitude and a minimum

distance of 75 samples (150 ms at 500 Hz).

3. Segmentation: The signal is segmented into 200-

sample windows (0.4 seconds) centered on each R-

peak.

B. RCNN Model Design

The RCNN model combines convolutional and

recurrent layers to capture spatial and temporal features. The

architecture is defined as:

● Input Layer: Shape (200, 1) for each ECG segment.

● Conv1D Layers: Two layers with 64 filters, kernel

size 3, ReLU activation.

● LSTM layers: Two layers (64 and 32 units) for

temporal analysis.

● Dense Layers: A Dense Layer with 32 units (ReLU),

a dropout layer (0.5) , and a final dense layer with

sigmoid Activation for Binary Classification.

C. Training and Loss Function

The model is trained using the Adam optimizer with a

learning rate of 0.001. The loss function is binary cross-

entropy.Training is performed for 10 epochs with a batch size

of 32.

DATASET AND PREPROCESSING

A. Dataset

The PTB-XL dataset [9] is used, containing 21,837

ECG recordings from 18,885 patients. Each recording is 10

seconds long, sampled at 500 Hz, with 12 leads. This project

uses Lead II for binary classification (normal vs. abnormal).

Table I: PTB-XL Dataset Characteristics

B. Preprocessing

IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 490 www.ijsart.com

 The preprocessing pipeline includes:

1. Loading: ECG signals are loaded using the wfdb

library.

2. Noise Removal: Baseline drift is removed via

detrending.

3. R-Peak Detection: R-peaks are identified using

SciPy’s find_peaks.

4. Segmentation: Signals are segmented into 200-

sample windows centered on R-peaks.

Fig. 2: Sample ECG Signal with R-Peaks

SYSTEM ARCHITECTURE

The system architecture integrates preprocessing,

model training, and deployment. The RCNN model

architecture is shown in Fig. 3.

Fig. 3: RCNN Model Architecture

Table II: RCNN Model Layers

This system includes a Flask- based Web interface for

Uploading ECG files and Receiving predictions , Deployed in

Streamlit Cloud for Global access.

IMPLEMENTATION

The implementation of the ECG classification system

is carried out in Python 3.8, leveraging TensorFlow 2.4 for

model development and training. The system is designed to be

modular, efficient, and scalable, ensuring it can handle large

datasets like PTB-XL while maintaining real-time performance

for clinical applications. The implementation process is divided

into three core scripts, each responsible for a distinct phase of

the pipeline: data preprocessing, model training, and model

comparison. These scripts are supported by a robust hardware

and software environment, and the dataset is carefully split and

balanced to ensure effective training. A Flask-based web

interface and deployment on Streamlit Cloud further enhance

the system’s accessibility for healthcare professionals.

A. Implementation Workflow

The implementation follows a structured workflow,

ensuring seamless integration of preprocessing, training,

evaluation, and deployment.

B. Core Scripts

1) prepare_data.py: Preprocessing ECG Signals

The prepare_data.py script is responsible for loading

and preprocessing ECG signals from the PTB-XL dataset. It

performs the following tasks:

 Loading ECG Files: Uses the wfdb library to load

ECG recordings, extracting Lead II signals for

analysis.

IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 491 www.ijsart.com

 Noise Removal: Applies detrending to remove

baseline drift, ensuring a clean signal for further

processing.

 R-Peak Detection: Detects R-peaks using SciPy’s

find_peaks function with a height threshold of 30% of

the maximum amplitude and a minimum distance of

75 samples (150 ms at 500 Hz sampling rate).

 Segmentation: Segments the signal into 200-sample

windows (0.4 seconds) centered on each R-peak,

preparing the data for model input.

 Saving Data: Saves the preprocessed segments as

processed_data.npy and corresponding labels as

labels.npy for use in training.

This script processes 100 files for demonstration, resulting in

12,345 segments, which are then used for training and testing.

2) train_model.py: Building and Training the RCNN

Model

The train_model.py script builds and trains the RCNN model

using the preprocessed data. Key steps include:

● Data Loading: Loads the preprocessed segments

(processed_data.npy) and labels (labels.npy).

● Dataset Splitting: Splits the data into 70% training

(8,641 segments) and 30% testing (3,704 segments)

using sklearn.model_selection.train_test_split with a

random state of 42 for reproducibility.

● Model Architecture: Defines the RCNN model with

two Conv1D layers (64 filters, kernel size 3), two

LSTM layers (64 and 32 units), a dense layer (32

units with ReLU), a dropout layer (0.5 rate), and a

final dense layer with sigmoid activation for binary

classification.

● Training: Trains the model for 10 epochs with a

batch size of 32, using the Adam optimizer and binary

cross-entropy loss. The model achieves a validation

accuracy of 92.34% after training.

● Saving: Saves the trained model as rcnn_model.h5

and training history as training_history.npy.

3) compare_models.py: Comparing RCNN with a Baseline

CNN

The compare_models.py script evaluates the

performance of the RCNN model against a baseline CNN

model. It includes:

● CNN Model Definition: Builds a CNN with two

Conv1D layers (64 filters, kernel size 3) and two

dense layers (32 units and 1 unit with sigmoid

activation).

● Evaluation: Tests both models on a subset of 1,000

test segments, measuring accuracy, processing time,

and false positive rate using

sklearn.metrics.confusion_matrix.

● Results: The RCNN achieves 92% accuracy, 5.12

seconds processing time, and 8% false positives,

while the CNN achieves 85% accuracy, 7.34 seconds

processing time, and 12% false positives.

C. Hardware and Software Environment

The system is implemented on a machine with the

following specifications, ensuring efficient training and

deployment.

Table III: Hardware and Software Requirements

The 8GB RAM and 2GHz CPU ensure that the

system can handle the computational demands of deep

learning, while the SSD provides fast data access. Python 3.8 is

chosen for its stability and compatibility with TensorFlow 2.4,

which supports GPU acceleration (though not used in this

setup). Flask 1.1.2 is used to create a local web interface, and

Streamlit 1.10.0 enables cloud deployment. Additional libraries

like NumPy, SciPy, and scikit-learn support data processing

and evaluation, while Matplotlib is used for visualization.

D. Dataset Splitting and Class Imbalance Handling

The PTB-XL dataset, consisting of 12,345

preprocessed segments after running prepare_data.py, is split

into 70% training (8,641 segments) and 30% testing (3,704

segments). The split ensures sufficient data for training while

reserving a substantial portion for unbiased evaluation. The

class distribution in the dataset is imbalanced, with 60%

IJSART - Volume 11 Issue 4 – APRIL 2025 ISSN [ONLINE]: 2395-1052

Page | 492 www.ijsart.com

normal (7,407 segments) and 40% abnormal (4,938 segments), which could bias the model toward the majority class (normal).

To address this, class weighting is applied during

training to penalize misclassifications of the minority class

(abnormal) more heavily. The class weights are computed as

follows:

weightclass=total samplesnumber of classes×samples in class

For the dataset:

● Total samples = 12,345

● Number of classes = 2

● Normal samples = 7,407

● Abnormal samples = 4,938

Below is the code snippet used for class weighting:

from sklearn.utils import class_weight

import numpy as np

Load labels

y_data = np.load('labels.npy')

Compute class weights

class_weights = class_weight.compute_class_weight(

class_weight='balanced',

classes=np.unique(y_data),

 y=y_data

)

class_weight_dict = dict(enumerate(class_weights))

Use in training

model.fit(

 X_train, y_train,

 epochs=10,

 batch_size=32,

 validation_data=(X_val, y_val),

 class_weight=class_weight_dict,

 verbose=1

)

This approach ensures that the model learns to classify both

normal and abnormal ECGs effectively, reducing bias and

improving recall for the abnormal class (91%, as reported in

the results).

E. Web Interface and Deployment

A Flask-based web interface is developed to allow

users to upload ECG files and receive classification results.

The interface includes:

● Upload Functionality: Users upload ECG files in

.dat format (compatible with PTB-XL).

● Processing: The uploaded file is preprocessed using

the same pipeline as prepare_data.py, and the RCNN

model predicts the class (normal or abnormal).

● Result Display: The classification result and

confidence score are displayed to the user.

The system is deployed on Streamlit Cloud, enabling

global access. Streamlit provides a user-friendly interface and

supports real-time interaction, making the system suitable for

telemedicine applications. The deployment process involves:

1. Packaging the Flask app and trained model

(rcnn_model.h5) into a Streamlit app.

2. Uploading the app to Streamlit Cloud, ensuring

dependencies (e.g., TensorFlow, Flask) are specified

in a requirements.txt file.

3. Testing the deployed app to confirm that it processes

ECG files in under 6 seconds, aligning with real-time

requirements.

F. Implementation Challenges

Several challenges were encountered during implementation:

● Data Loading Errors: Some PTB-XL files had

inconsistent formats, requiring error handling in

prepare_data.py.

● Training Time: The RCNN model took 20 minutes

to train on the CPU, which could be reduced with

GPU acceleration.

● Class Imbalance: Initial models showed bias toward

the normal class, mitigated by class weighting.

● Deployment Issues: Streamlit Cloud had memory

limitations, requiring optimization of the model size

(2.5 MB) and preprocessing pipeline.

These challenges were addressed through robust error

handling, optimization techniques, and careful tuning of the

training process, ensuring the system’s reliability and

efficiency.

RESULTS AND DISCUSSION

A. Performance Metrics

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 493 www.ijsart.com

The RCNN model achieves the following metrics on the test

set:

Table IV: Performance Metrics

B. Training Accuracy

The training accuracy improves over 10 epochs, as shown in

Fig. 4.

Fig. 4: Training Accuracy Over Epochs

C. Model Comparison

The RCNN outperforms the CNN in accuracy, processing

time, and false positives.

Table V: RCNN vs. CNN Comparison

Metric RCNN CNN

Accuracy 92% 85%

Processing Time 5.12 sec 7.34 sec

False Positives 8% 12%

D. Discussion

The RCNN’s superior performance (92% accuracy)

is due to its ability to capture both spatial and temporal

features, unlike the CNN, which lacks temporal analysis. The

system processes a 10-second ECG in 5.12 seconds, making it

suitable for real-time applications. However, limitations

include the focus on binary classification and Lead II, which

may miss multi-class or multi-lead insights.

FUTURE SCOPE AND RECOMMENDATIONS

A. Future Scope

1. Multi-Class Classification: Extend the model to

classify specific conditions like atrial fibrillation.

2. Multi-Lead Analysis: Incorporate all 12 leads for

comprehensive diagnosis.

3. Wearable Integration: Adapt the system for real-

time monitoring via smartwatches.

4. Attention Mechanisms: Add attention layers to

improve model interpretability.

1) B. Recommendations

1. Test the system in clinical settings to validate its

practical utility.

2. Address data privacy concerns for online

deployment.

3. Expand the dataset to include diverse patient

populations.

CONCLUSION

 This paper presented an automated ECG

classification system using an RCNN model, achieving 92%

accuracy on the PTB-XL dataset. The system preprocesses

ECG signals, trains an RCNN model, and deploys it online via

Streamlit Cloud, making it accessible for telemedicine and

emergency care. The RCNN outperforms a baseline CNN,

demonstrating the effectiveness of combining spatial and

temporal feature extraction. Future work includes multi-class

classification and integration with wearable devices, paving

the way for advanced cardiac diagnostics.

REFERENCES

[1] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and

PhysioNet: Components of a New Research Resource for

Complex Physiologic Signals,” Circulation, vol. 101, no.

23, pp. e215-e220, Jun. 2000.

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 494 www.ijsart.com

[2] A. Lyon, A. Mincholé, J. P. Martínez, P. Laguna, and B.

Rodriguez, “Computational Techniques for ECG Analysis

and Interpretation in Light of Their Contribution to

Clinical Diagnosis,” Journal of Electrocardiology, vol.

51, no. 6, pp. 1034-1041, Nov. 2018.

[3] A. Paszke et al., “PyTorch: An Imperative Style, High-

Performance Deep Learning Library,” Advances in

Neural Information Processing Systems (NeurIPS), vol.

32, pp. 8024-8035, Dec. 2019.

[4] A. Vaswani et al., “Attention Is All You Need,” Advances

in Neural Information Processing Systems (NeurIPS), vol.

30, pp. 5998-6008, Dec. 2017.

[5] A. Y. Hannun et al., “Cardiologist-Level Arrhythmia

Detection and Classification in Ambulatory

Electrocardiograms Using a Deep Neural Network,”

Nature Medicine, vol. 25, no. 1, pp. 65-69, Jan. 2019.

[6] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic

Optimization,” arXiv preprint arXiv:1412.6980, Dec.

2014.

[7] F. Chollet, Deep Learning with Python, Manning

Publications, 2017.

[8] G. D. Clifford, C. Liu, B. Moody, D. Springer, and I.

Silva, “Classification of Normal/Abnormal Heart Sound

Recordings: The PhysioNet/Computing in Cardiology

Challenge 2016,” 2016 Computing in Cardiology

Conference (CinC), pp. 609-612, Sep. 2016.

[9] G. Sannino and G. De Pietro, “A Deep Learning

Approach for ECG-Based Heartbeat Classification for

Arrhythmia Detection,” Future Generation Computer

Systems, vol. 86, pp. 446-455, Sep. 2018.

[10] J. Brownlee, Deep Learning for Time Series Forecasting:

Predict the Future with MLPs, CNNs and LSTMs in

Python, Machine Learning Mastery, 2018.

[11] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection

Algorithm,” IEEE Transactions on Biomedical

Engineering, vol. 32, no. 3, pp. 230-236, Mar. 1985.

[12] M. Abadi et al., “TensorFlow: A System for Large-Scale

Machine Learning,” 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

16), pp. 265-283, Nov. 2016.

[13] M. Kachuee, S. Fazeli, and M. Sarrafzadeh, “ECG

Heartbeat Classification: A Deep Transferable

Representation,” 2018 IEEE International Conference on

Healthcare Informatics (ICHI), pp. 443-444, Jun. 2018.

[14] P. de Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic

Classification of Heartbeats Using ECG Morphology and

Heartbeat Interval Features,” IEEE Transactions on

Biomedical Engineering, vol. 51, no. 7, pp. 1196-1206,

Jul. 2004.

[15] P. Wagner et al., “PTB-XL, a Large Publicly Available

Electrocardiography Dataset,” Scientific Data, vol. 7, no.

1, pp. 1-15, May 2020.

[16] Q. Zhang, C. Zhou, and X. Wang, “ECG Signal

Classification Using Deep Learning Techniques Based on

Hybrid CNN-LSTM Model,” Journal of Medical Systems,

vol. 43, no. 8, pp. 1-10, Aug. 2019.

[17] R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung

der EKG-Signaldatenbank CARDIODAT der PTB über

das Internet,” Biomedizinische Technik/Biomedical

Engineering, vol. 40, no. s1, pp. 317-318, 1995.

[18] S. Hochreiter and J. Schmidhuber, “Long Short-Term

Memory,” Neural Computation, vol. 9, no. 8, pp. 1735-

1780, Nov. 1997.

[19] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-Time

Patient-Specific ECG Classification by 1-D

Convolutional Neural Networks,” IEEE Transactions on

Biomedical Engineering, vol. 63, no. 3, pp. 664-675, Mar.

2016.

[20] S. L. Oh, E. Y. K. Ng, R. San Tan, and U. R. Acharya,

“Automated Diagnosis of Arrhythmia Using Combination

of CNN and LSTM Techniques with Variable Length

Heart Beats,” Computers in Biology and Medicine, vol.

102, pp. 217-226, Nov. 2018.

[21] T. Ince, S. Kiranyaz, and M. Gabbouj, “A Generic and

Robust System for Automated Patient-Specific

Classification of ECG Signals,” IEEE Transactions on

Biomedical Engineering, vol. 56, no. 5, pp. 1415-1426,

May 2009.

[22] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H.

Tan, and M. Adam, “Application of Deep Convolutional

Neural Network for Automated Detection of Myocardial

Infarction Using ECG Signals,” Information Sciences,

vol. 415-416, pp. 190-198, Nov. 2017.

[23] World Health Organization, “Cardiovascular Diseases

(CVDs),” 2023. [Online].

[24] X. Li, Y. Wang, and B. Wang, “A Hybrid Deep Learning

Model for ECG Signal Classification,” IEEE Access, vol.

8, pp. 118789-118798, Jun. 2020.

[25] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,”

Nature, vol. 521, no. 7553, pp. 436-444, May 2015.

