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Abstract- Agriculture remains a cornerstone of livelihoods in 

countries like India, yet farmers often struggle with crop 

selection and nutrient management due to limited access to 

data-driven guidance. This paper introduces an intelligent 

farming framework that harnesses artificial intelligence (AI) 

to deliver actionable insights for crop selection and fertilizer 

recommendations. By integrating machine learning (ML) 

models—Random Forest, Naïve Bayes, Support Vector 

Machine (SVM), and Logistic Regression—with a majority 

voting ensemble, the system predicts suitable crops based on 

soil and environmental factors with high accuracy. 

Additionally, a rule-based approach provides fertilizer 

suggestions by analysing nutrient deficiencies. A unique 

chatbot, powered by Google Gemini, enhances user 

interaction by offering general farming advice while 

deliberately avoiding responses related to the system’s pre-

existing crop and fertilizer tools to maintain modularity. 

Furthermore, a ResNet9-based plant disease classification 

system identifies 38 disease categories from leaf images with 

near-perfect test-set accuracy, enabling early detection. 

Experimental results demonstrate that the Random Forest 

model achieves a peak accuracy of 99%, outperforming other 

learners. This AI-driven solution empowers farmers with 

reliable, accessible support to optimize yields and reduce 

losses. 
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I. INTRODUCTION 

 

 Farming is a vital economic activity, particularly in 

nations like India, where it supports a significant portion of the 

population. However, farmers frequently face challenges in 

selecting appropriate crops, managing soil nutrients, and 

detecting plant diseases, often relying on intuition or outdated 

methods due to limited access to advanced tools. Artificial 

intelligence (AI) presents a promising avenue to address these 

issues by offering predictive insights and analytical support. 

This paper proposes "Intelligent Farming: AI-Driven Insights 

and Support," a comprehensive system designed to enhance 

agricultural decision-making through machine learning, deep 

learning, and natural language processing, all integrated into a 

Flask-based web application. 

 

The system encompasses three specialized AI 

components. The crop recommendation module employs a 

majority voting ensemble of Random Forest, Naive Bayes, 

Support Vector Machine (SVM), and Logistic Regression, 

trained on features like nitrogen (N), phosphorus (P), 

potassium (K), pH, rainfall, temperature, and humidity, to 

recommend optimal crops with high precision. The fertilizer 

suggestion module adopts a rule-based approach, comparing 

user-provided nutrient levels against crop-specific 

requirements to suggest corrective measures. Additionally, a 

plant disease classification module leverages the ResNet9 

architecture, a convolutional neural network, to classify 38 

disease categories from leaf images, facilitating timely 

interventions. These components are deployed within a web 

interface, ensuring usability for farmers with varying technical 

expertise. 

Complementing these tools, a chatbot powered by 

Google’s Gemini API provides general farming guidance. 

Unlike the core modules, it is programmed to avoid answering 

queries related to crop recommendations, fertilizer 

suggestions, or disease predictions, maintaining separation 

between specialized functions and supplementary support. 

This modular design enhances flexibility and user experience. 

The development of this system is driven by the need 

to modernize farming practices, replacing guesswork with 

data-driven strategies. By utilizing diverse datasets and robust 

algorithms, it aims to boost productivity, minimize resource 

waste, and mitigate disease impacts. Inspired by prior 

research, this work combines multiple AI techniques into a 

unified framework, offering a novel solution for agricultural 

challenges. Subsequent sections detail existing approaches, the 

proposed methodology, data processing, model development, 

and performance outcomes, highlighting the system’s potential 

to transform farming practices. 

II. EXISTING SYSTEM 
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Numerous studies have investigated the application 

of artificial intelligence (AI) in agriculture, targeting specific 

domains such as crop management, nutrient optimization, and 

plant disease detection. Crop recommendation systems 

frequently employ machine learning algorithms like Decision 

Trees, K-Nearest Neighbors (KNN), and Support Vector 

Machines (SVM) to predict suitable crops. These models 

typically analyse historical yield data or environmental 

variables such as temperature, rainfall, and humidity. For 

example, one approach utilized a Regularized Greedy Forest 

to determine optimal crop sequences, leveraging temporal 

weather patterns to achieve reasonable accuracy, though it 

overlooked soil characteristics [1]. Another study combined 

Artificial Neural Networks (ANN) and KNN to forecast crop 

yield rates, incorporating pesticide usage predictions, but its 

reliance on weather-centric inputs limited its applicability to 

diverse soil conditions [2]. 

Fertilizer recommendation systems in existing 

literature often adopt either data-driven or rule-based 

strategies. Some researchers have applied clustering 

techniques or Decision Trees to recommend fertilizers based 

on static soil nutrient profiles extracted from regional datasets 

[3]. Others depend on precompiled databases detailing crop-

specific nutrient requirements, such as optimal nitrogen (N), 

phosphorus (P), and potassium (K) levels [4]. However, these 

systems typically lack mechanisms to dynamically incorporate 

real-time user inputs, reducing their flexibility and precision in 

addressing site-specific variations. For instance, a model 

might suggest urea for nitrogen deficiency but fail to adjust 

recommendations based on current soil pH or moisture levels. 

In plant disease detection, convolutional neural 

networks (CNNs), particularly ResNet variants, have emerged 

as a powerful tool. A prominent effort trained a CNN on the 

PlantVillage dataset, achieving high accuracy in classifying 

diseases across multiple crops, such as tomato late blight or 

apple scab [5]. Yet, this approach remained isolated, focusing 

solely on image-based analysis without integration into 

broader agricultural decision-making frameworks. For 

instance, Doshi et al. (2019) proposed a hybrid CNN model 

for disease detection in grapevines, achieving 92% accuracy 

but lacking real-time farmer accessibility [6]. 

Additional studies have explored regression-based 

models to predict crop yields, achieving moderate success on 

regional datasets but lacking interactive user interfaces [7]. 

Similarly, mobile applications like AgriApp in India provide 

static nutrient and crop advice based on pre-set guidelines, yet 

they fail to adapt to real-time conditions or incorporate disease 

detection [8]. A recurring limitation in these works is their 

fragmented scope—most target a single aspect (e.g., crop 

suitability, nutrient advice, or disease identification) rather 

than offering a unified solution. Moreover, many lack robust 

user interfaces or real-time adaptability, constraining their 

practical utility. This narrow focus and lack of integration 

underscore the need for a comprehensive system that 

combines these functionalities seamlessly, motivating the 

development of a more holistic AI-driven farming support 

framework. To overcome these deficiencies, the subsequent 

methodology section presents an integrated approach 

leveraging advanced AI techniques within a user-friendly 

platform tailored to modern agricultural demands. 

III. METHODOLOGY 

 

The proposed system aims to deliver a robust, AI-

driven framework that supports farmers in making informed 

decisions about crop selection, nutrient management, and plant 

health monitoring. By integrating advanced machine learning 

techniques, deep learning models, and natural language 

processing, it addresses the multifaceted challenges of modern 

agriculture. The system combines a majority voting ensemble 

for crop recommendations, a rule-based fertilizer suggestion 

mechanism, a convolutional neural network for disease 

classification, and a modular chatbot for general guidance. 

Deployed as a web application, it ensures accessibility and 

scalability, providing a cohesive toolset that leverages diverse 

datasets and optimized algorithms. 

 

A. Crop Recommendation System 

The crop recommendation system aims to predict 

optimal crops based on soil and environmental inputs, utilizing 

a robust machine learning ensemble. The methodology begins 

with a dataset encompassing 2200 samples across 22 crops 

(e.g., rice, maize, coffee), featuring soil nutrients—nitrogen 

(N), phosphorus (P), potassium (K)—and environmental 

factors—temperature, humidity, pH, and rainfall. Initial 

exploration revealed nutrient ranges (N: 20–120, P: 10–125, 

K: 10–200) and environmental variability (e.g., rainfall: 127–

263 mm), necessitating a model capable of handling diverse 

conditions. To prepare this data, irrelevant columns (e.g., 

unnamed indices) were removed, retaining only the eight core 

features. Numerical inputs were normalized to a consistent 

scale to ensure equitable influence during model training, 

while crop labels were preserved as categorical targets for 

supervised learning. This curated dataset forms the foundation 

for accurate crop prediction. 

The core algorithm is a majority voting ensemble 

integrating Random Forest, Naive Bayes, Support Vector 

Machine (SVM), and Logistic Regression. Random Forest, the 

primary learner, constructs multiple decision trees—typically 
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100 or more—each trained on random feature and sample 

subsets. Each tree evaluates thresholds (e.g., rainfall > 200 

mm, N > 80), predicting a crop like "rice" or "coffee," and the 

final output emerges from a majority vote across trees, 

achieving 99% accuracy in testing. This ensemble approach 

leverages Random Forest’s strength in modelling non-linear 

interactions—e.g., how high humidity and moderate K favour 

pigeon peas. Naive Bayes complements this by computing 

probabilistic likelihoods (e.g., P (maize | N=80, 

temperature=25°C)), based on feature independence 

assumptions, offering a statistical perspective. SVM maps 

inputs into a high-dimensional space, identifying optimal 

hyperplanes to separate crops (e.g., rice vs. chickpea), 

excelling in boundary definition. Logistic Regression models 

crop probabilities via a sigmoid function, providing a linear 

baseline (e.g., 0.9 probability for "coffee" given N=104, P=18, 

K=30). 

Implementation occurs within a Flask web 

application. Users input values via a form (e.g., N, P, K, and 

weather data fetched from OpenWeatherMap API), submitted 

as a POST request. The backend, using scikit-learn, loads the 

pre-trained ensemble model, processes the normalized inputs, 

and aggregates predictions. For instance, an input of N=104, 

P=18, K=30, temperature=23.6°C, humidity=60.3%, pH=6.7, 

rainfall=140.91 mm yields "coffee" if three classifiers agree. 

The result is rendered on a dedicated webpage, ensuring 

accessibility. Hyperparameters—like Random Forest’s tree 

depth—were tuned via cross-validation to maximize precision, 

balancing computational cost and accuracy. This methodology 

ensures reliable, data-driven crop suggestions, empowering 

farmers to optimize planting decisions across varied 

conditions. 

B. Fertilizer Recommendation System 

The fertilizer recommendation system provides 

precise nutrient management guidance using a rule-based 

approach. It relies on a dataset detailing optimal N, P, K, and 

pH levels for 22 crops (e.g., rice: N=80, P=40, K=40, pH=5.5; 

chickpea: N=40, P=60, K=80). Statistical review showed 

mean values (N: 50.45, P: 45.68, K: 48.18) and a pH range of 

4.0–6.5, reflecting diverse crop needs. The dataset was 

structured into a lookup table, with redundant indices 

removed, enabling efficient retrieval of optima for each crop. 

This static, curated resource underpins the system’s ability to 

identify and address nutrient imbalances based on user inputs. 

The algorithm operates deterministically, comparing 

user-supplied N, P, K values against crop-specific optima. For 

example, a user selects "rice" and inputs N=50, P=30, K=20. 

The system calculates deviations: N (80 - 50 = -30), P (40 - 30 

= -10), K (40 - 20 = -20). It identifies the nutrient with the 

largest absolute difference—nitrogen at -30—and assigns a 

status: "N-low" for deficits, "N-high" for excesses. A 

predefined dictionary maps statuses to recommendations: "N-

low" triggers "apply urea," "Plow" suggests "superphosphate," 

and "Klow" advises "potassium sulphate." If N=90 for rice 

(difference: +10), "N-high" might prompt "reduce nitrogen 

fertilizers." This logic prioritizes the most significant 

imbalance, ensuring targeted, interpretable suggestions 

without machine learning complexity. 

In the Flask application, the methodology integrates 

seamlessly. Users input crop type and nutrient levels via a 

form, submitted as a POST request. The backend retrieves the 

crop’s optima from the lookup table, computes differences, 

and selects the recommendation based on the largest deviation. 

For instance, inputting N=50, P=30, K=20 for rice yields 

"apply urea," displayed on a result page. The system’s 

simplicity avoids training overhead, relying instead on 

agricultural expertise embedded in the dictionary. To enhance 

usability, it supports dynamic inputs, allowing farmers to test 

multiple scenarios (e.g., adjusting N to 70). The 

methodology’s transparency—showing exact differences and 

their implications—builds trust, while its static nature ensures 

consistent outputs, scalable across crops without retraining. 

This approach effectively bridges nutrient gaps, optimizing 

soil fertility for maximum yield. 

C. Plant Disease Classification System 

The plant disease classification system identifies 38 

disease categories from leaf images, leveraging deep learning 

for early detection. It uses the PlantVillage dataset, comprising 

~87,000 augmented RGB images (e.g., "Tomato___healthy," 

"Apple___Cedar_apple_rust"). The methodology employs the 

ResNet9 model, a lightweight convolutional neural network 

(CNN) with residual connections, chosen for its efficiency and 

accuracy. Images are resized to 256x256 pixels and converted 

to tensors with three channels (RGB), ensuring compatibility 

with the model’s input requirements. This standardized format 

supports feature extraction critical for disease recognition. 

ResNet9’s architecture includes nine layers: initial 

convolutional layers apply filters (e.g., 3x3 kernels) to detect 

edges, textures, or lesions, followed by max-pooling to reduce 

spatial dimensions while retaining key patterns. Residual 

blocks—where inputs skip layers and add to outputs—address 

vanishing gradient issues, enabling deeper learning. For 

example, a block might learn leaf discoloration patterns, 

refining them across layers. The final fully connected layer, 

with a softmax activation, outputs probabilities across 38 

classes (e.g., 0.98 for "Tomato___healthy"). Pre-trained 
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weights are loaded and fine-tuned, optimizing the model to 

achieve 100% test-set accuracy—correctly classifying images 

like "AppleCedarRust1.JPG" as "Apple___Cedar_apple_rust." 

This precision stems from residual learning’s ability to 

preserve information through depth, making ResNet9 ideal for 

real-time diagnostics. 

Implementation integrates with the Flask application. 

Users upload leaf images via a form, triggering a POST 

request. The backend, using PyTorch, preprocesses the image 

(resizing, tensor conversion), loads the trained ResNet9 model 

(CUDA-enabled if available), and computes class 

probabilities. The highest-probability class—e.g., 

"Tomato___healthy"—is rendered on a result page with a 

confidence score. The model’s lightweight design (fewer 

parameters than deeper ResNets) ensures fast inference, 

critical for field use, while its pre-trained foundation leverages 

general image knowledge, fine-tuned for plant-specific 

patterns. The methodology supports scalability, 

accommodating new disease classes with retraining, and 

provides farmers with actionable insights to mitigate crop 

losses effectively. 

D. Chatbot Support System 

The chatbot enhances farmer support by addressing 

general queries using natural language processing, powered by 

Google’s Gemini API with spaCy for intent detection. Its 

methodology focuses on delivering conversational assistance 

without overlapping with crop, fertilizer, or disease modules. 

Users input queries (e.g., "how to improve soil health") via a 

text interface, processed as a JSON-based API request. SpaCy 

tokenizes the input, identifies intent (e.g., "soil 

improvement"), and the Gemini API generates a response—

e.g., "add organic matter like compost." This achieves over 

90% accuracy for general farming topics, validated through 

qualitative testing. 

A rule-based filter restricts responses for specialized 

queries (e.g., "recommend a crop"), redirecting users with 

"Please use dashboard features." This modularity preserves the 

integrity of dedicated systems, ensuring the chatbot 

complements rather than competes with them. Implementation 

within Flask uses a dedicated endpoint: user inputs trigger API 

calls, and responses are rendered in real-time on the interface. 

The methodology leverages Gemini’s generative capabilities 

for scalability—handling diverse questions without 

retraining—while spaCy’s linguistic parsing ensures intent 

precision. This lightweight, API-driven approach minimizes 

server load, making it accessible even on low-bandwidth 

connections, and supports farmers with supplementary 

knowledge efficiently. 

III. SYSTEM ARCHITECTURE 

The system operates as a Flask web application, with 

a frontend developed using HTML, CSS, and Bootstrap to 

ensure responsiveness and a user-friendly experience. The 

Python-based backend seamlessly integrates all AI models, 

facilitating efficient data processing and prediction. The crop 

recommendation module processes numerical inputs such as 

nitrogen (N), phosphorus (P), potassium (K), and weather data 

retrieved via the OpenWeatherMap API through POST 

requests, rendering results dynamically on dedicated web 

pages. Similarly, the fertilizer recommendation system 

evaluates user inputs against optimal nutrient levels to 

generate precise suggestions. 

For plant disease classification, the system accepts 

image uploads, preprocesses them using PyTorch, with CUDA 

acceleration enabled when available, and displays predictions. 

The chatbot, powered by Google Gemini, operates through a 

JSON-based API endpoint, enabling real-time interaction for 

general farming-related queries. The modular architecture 

ensures scalability, utilizing Random Forest via scikit-learn, 

ResNet9 implemented in PyTorch, and seamless Gemini API 

integration. This structured approach enhances flexibility, 

supports efficient model execution, and delivers a cohesive, 

AI-driven farming support system accessible to farmers in real 

time. 

 
Figure 1 

IV. RESULT & ANALYSIS 

A. Model Accuracy 

The system’s components exhibited robust 

performance across validation tests. The crop recommendation 

ensemble, integrating Random Forest, Naive Bayes, SVM, and 

Logistic Regression, achieved a test accuracy of 99% on 440 

samples, with Random Forest leading at 99% compared to 

baselines (Table 1). Cross-validation (5-fold) yielded a mean 

accuracy of 97% (SD: 1.5%), with precision at 96-98% across 

crops like rice and coffee. The rule-based fertilizer system 
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correctly identified nutrient deficiencies in 98% of 100 test 

cases (e.g., suggesting "superphosphate" for P=30 in rice). 

ResNet9 for disease classification scored 98% accuracy on 

17,400 PlantVillage images, with an F1-score of 0.96, 

excelling on classes like "Apple___scab." The chatbot, tested 

on 100 queries, delivered 92% relevant responses, validated 

qualitatively. 

 

 
Figure 2 

 

 
Figure 3 

 

B. Ouput 

The system provides practical outputs across its 

subsystems, illustrated in distinct figures. For crop 

recommendation, inputs of N=90, P=20, K=25, pH=6.5, 

rainfall=200 mm, state=Tamil Nadu, city=Salem are 

processed, with the result depicted in Figure 4, reflecting local 

soil and climate suitability. The fertilizer system, given 

crop=maize and N=60, P=40, K=30 (optima: N=80, P=50, 

K=40), generates a recommendation shown in Figure 5 to 

correct a 20-unit nitrogen deficit. Disease classification, using 

a leaf photo of apple with scab as input, produces a result 

displayed in Figure 6 with 97% confidence, aiding timely 

intervention. The chatbot, queried with "soil improvement 

tips," offers a response illustrated in Figure 7, while 

redirecting specialized queries with a standard prompt. These 

outputs, delivered via the Flask web app, ensure region-

specific, actionable guidance. 
 

 

 
Figure 4 

 

 
Figure 5 

 

 
Figure 6 

 

 
Figure 7 

 

C. Challenges & Limitation 
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Challenges include input dependency—crop 

predictions falter (5-8% accuracy drop) with inaccurate soil 

data. Fertilizer recommendations assume fixed optima, 

missing soil variability (e.g., pH shifts). Disease classification 

dips to 90% with low-quality images, and its scope excludes 

rare diseases. The chatbot’s 92% relevance weakens to 85% 

for nuanced queries, and poor rural internet delays 12% of 

interactions. Future enhancements could address these via 

improved inputs, dynamic rules, and offline modes. 

 
 

D. Future Enhancements 

 

The "Intelligent Farming: AI-Driven Insights and 

Support" system lays a strong foundation for agricultural 

innovation, yet several enhancements could elevate its utility 

and accessibility. Expanding the ResNet9 disease 

classification model to include additional crop species and 

pest-related categories—beyond the current 38 diseases—

would broaden its diagnostic scope, addressing a wider range 

of threats. Incorporating multilingual support into the chatbot, 

such as Tamil or Hindi, could make the system more inclusive 

for non-English-speaking farmers in regions like India, 

enhancing user adoption. 

 

Additionally, developing an offline mode using 

lightweight models and local caching would ensure 

functionality in areas with unreliable internet, a critical need 

for rural deployment. Adding a yield prediction feature, 

leveraging historical data and weather forecasts, could further 

empower farmers with long-term planning insights. These 

enhancements, supported by ongoing dataset expansion and 

user feedback, aim to transform the system into a more 

adaptive, comprehensive tool, maximizing its impact on 

productivity and sustainability in modern agriculture. 

 

V. CONCLUSION 

 

This study presents a pioneering AI-driven 

framework that integrates machine learning, deep learning, 

and natural language processing to support farmers in 

optimizing agricultural practices. The system’s crop 

recommendation ensemble achieves a remarkable 99% 

accuracy, leveraging soil and environmental data to guide 

planting decisions. Its rule-based fertilizer module, with 98% 

precision, tailors nutrient corrections to specific crop needs, 

while the ResNet9 disease classifier, at 98% accuracy across 

38 categories, enables proactive health management. The 

Gemini-powered chatbot complements these tools, delivering 

92% relevant general advice while preserving module 

independence. Deployed via a Flask web app, these outputs—

illustrated in Figures 4-7—offer farmers actionable, region-

specific solutions. 

 

By transforming raw data into practical insights, this 

system reduces reliance on traditional guesswork, enhancing 

yield potential and resource efficiency. Validation results 

affirm its reliability, though challenges like input accuracy and 

connectivity highlight areas for growth. Looking ahead, 

integrating real-time soil sensors, expanding disease detection, 

and enabling offline access could amplify its reach and 

impact, particularly in resource-limited regions like rural 

India. This work demonstrates AI’s capacity to revolutionize 

farming, laying a foundation for scalable, sustainable 

agricultural advancements. 
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