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Abstract- Advancements in autonomous vehicle technology 

rely heavily on their ability to navigate diverse and 

challenging conditions, including extreme environments. This 

paper explores the use of AI-generated synthetic data to 

enhance training datasets for autonomous vehicles, focusing 

on scenarios difficult to capture in real-world settings, such as 

severe weather, low-light conditions, and unusual road 

situations. Utilizing generative adversarial networks (GANs) 

and other AI techniques, synthetic data is created to closely 

mimic real-world conditions, enhancing the realism and 

diversity of training data. By integrating synthetic data with 

real-world datasets, autonomous systems can be trained more 

comprehensively, improving their robustness and safety by 

exposing them to a wider range of challenging scenarios 

during training. High-quality labels of disparity are produced 

by a model-guided filtering strategy from multi-frame LiDAR 

points. This approach broadens the diversity of training data 

and allows for controlled experimentation with edge cases and 

rare events, crucial for enhancing the reliability and 

adaptability of autonomous systems in practical applications. 
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I. INTRODUCTION 

 

 The proliferation of AVs represents a significant leap 

in transportation technology. However, the deployment of 

AVs in real-world scenarios necessitates rigorous training 

under various environmental conditions. Traditional data 

collection methods are often insufficient for capturing extreme 

conditions such as severe weather, nighttime driving, and rare 

but critical scenarios like accidents or unusual road 

configurations. This paper investigates the application of AI-

generated synthetic data to bridge this gap, ensuring that AVs 

are well-prepared for all possible driving conditions. 

 

1.1 Background 

 

Autonomous vehicles (AVs) rely heavily on vast 

amounts of high-quality data for training their perception and 

decision-making systems. This data is typically gathered 

through real-world driving experiences, encompassing various 

scenarios and environments. However, collecting such data, 

especially for extreme and rare conditions like heavy snow, 

torrential rain, dense fog, and nighttime driving, presents 

significant  challenges. These conditions are not only difficult 

to encounterbut also dangerous for manual collection, which 

makes comprehensive real-world datasets limited and 

insufficient. 

 

1.2 Problem Statement 

 

The primary challenge in training AVs for extreme 

conditions lies in the scarcity of real-world data for these 

scenarios. Extreme conditions are unpredictable and 

infrequent, making it hard to collect enough diverse examples 

for robust model training. Additionally, the variability in these 

conditions requires data that covers a wide range of situations 

to ensure the AV's reliability and safety in the real world. This 

scarcity leads to AVs that perform well under normal 

conditions but fail to generalize in adverse environments, 

posing significant risks. 

 

1.3 Objectives 

 

The objective of this paper is to explore the use of 

artificial intelligence (AI) to generate synthetic data tailored 

for training AVs in extreme conditions. By leveraging AI, we 

aim to create high-fidelity synthetic datasets that can simulate 

a variety of adverse scenarios, thus providing the necessary 

data diversity and volume required for effective AV training. 

 

II. BACKGROUND AND RELATED WORK 

 

2.1 Real-world Datasets 

 

Existing datasets like KITTI, Cityscapes, and 

DrivingStereo have been pivotal in advancing AV 

technologies. However, these datasets primarily focus on 

normal driving conditions with limited representation of 

extreme scenarios. The KITTI dataset, for instance, offers 

valuable data for stereo matching and object detection but 

lacks sufficient coverage of harsh weather or nighttime 

conditions. The DrivingStereo dataset improves on this by 
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including more diverse scenarios, yet it still falls short in 

providing comprehensive extreme condition data 

 

2.2 Challenges in Autonomous Vehicle Training 

 

• Insufficient data for extreme conditions: 

 

Real-world data collection often lacks diversity in 

extreme scenarios, making it challenging to train AVs 

effectively for all potential situations. 

 

• Safety risks and high costs: 

 

Collecting data in severe weather or other hazardous 

conditions can be dangerous and expensive. 

 

• Limitations of current simulation tools: 

 

Existing simulation tools may not adequately mimic 

real-world complexities, leading to gaps in training. 

 

2.2 Synthetic Data Generation Techniques 

 

The use of synthetic data in AV training is not new. 

Tools such as CARLA and AirSim have been developed to 

simulate realistic driving environments, enabling researchers 

to generate synthetic datasets for training and testing AV 

algorithms. These simulators offer controlled environments 

where various scenarios, including extreme conditions, can be 

created. However, the realism of the generated data and its 

effectiveness in real-world applications remain ongoing 

challenges. Techniques are; 

 

• Generative Adversarial Networks (GANs): 

 

Introduced by Goodfellow et al., GANs consist of a 

generator that creates synthetic data and a discriminator that 

evaluates its realism, iteratively improving the quality of 

generated data. 

 

• Recent advancements: 

 

Techniques like Conditional GANs (cGANs) and 

CycleGANs have shown promise in generating specific 

scenarios and translating between different domains (e.g., day 

to night). 

 

• Previous applications: 

 

Synthetic data has been used in other fields such as 

medical imaging and facial recognition, demonstrating its 

potential to enhance training datasets. 

                          III. METHOLOGY 

 

Synthetic Data Generation  

 

3.1 Generative Adversarial Networks (GANs) 

 

 
(Fig 1) 

 

GANs consist of two neural networks: the generator 

and the discriminator. The generator creates synthetic images, 

while the discriminator evaluates them against real images. 

Over time, the generator improves to produce highly realistic  

images. 

 

3.2 Conditional GANs (cGANs) and CycleGANs 

 

 
(Fig 2) 

 

• cGANs: These networks generate images 

conditioned on certain inputs, such as generating 

images of rain or snow given a clear weather image. 

• CycleGANs: Useful for domain adaptation, 

CycleGANs can translate images from one domain to 

another, like converting daytime images to nighttime 

scenes. 

 

3.3 Data Augmentation and Integration 

 

Augmentation techniques, such as flipping, cropping, 

and altering brightness, help increase the diversity of the 

dataset, ensuring models are robust to variations. 

 

 

Merging Synthetic Data with Real-World Datasets 
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                                              (Fig 3) 

 

Synthetic data is integrated with real-world datasets 

to create a comprehensive training set. This involves balancing 

the dataset to ensure a diverse range of scenarios and 

validating the augmented dataset through various metrics. 

 

3.31 Balancing the Dataset 

 

1. Diversity of Scenarios: 

 

• Objective: Ensure the dataset covers a wide 

range of driving conditions, including rare 

and extreme scenarios. 

• Approach: Use synthetic data to fill gaps 

where real-world data is scarce, such as in 

snowstorms or nighttime conditions. 

 

2. Proportional Representation: 

 

• Objective: Maintain a balanced ratio 

between synthetic and real data to prevent 

bias. 

• Approach: Adjust the volume of synthetic 

data to complement real-world data without 

overwhelming it. 

 

3.32 Validation of the Augmented Dataset 

 

1. Evaluation Metrics: 

 

• Accuracy: Measure how well models predict or 

classify objects in diverse conditions. 

• Robustness: Test the model’s ability to 

generalize across unseen scenarios. 

• Consistency: Check for stable performance 

across different environments and conditions. 

2. Realism Assessment: 

• Visual Inspection: Conduct manual reviews 

to ensure synthetic images are 

indistinguishable from real images. 

• Perceptual Studies: Use human evaluators 

to assess the realism of synthetic data. 

 

3. Cross-Validation: 

 

• Approach: Split the dataset into training 

and testing subsets, ensuring each contains a 

mix of real and synthetic data. 

• Objective: Validate that models trained on 

this mixed dataset perform well on both 

real-world and synthetic scenarios. 

 

3.4 Validation and Quality Assurance 

 

Ensuring the quality and effectiveness of synthetic data is 

crucial: 

 

• Validation Metrics: New metrics are proposed to 

evaluate the synthetic data, focusing on realism, 

diversity, and relevance to extreme conditions. 

Metrics such as Mean Absolute Error (MAE) and 

Intersection over Union (IoU) are used to assess the 

accuracy and completeness of the generated data. 

• Human-in-the-Loop: Incorporating human feedback 

into the validation process helps refine the synthetic 

data. Experts review the generated scenarios, 

providing insights and suggestions for improvement, 

which are then used to further enhance the AI 

models. 

 

IV. DATA CONSTRUCTION 

 

4.1 Data Acquisition  

 

The data acquisition system comprises multiple color 

cameras (Basler ACA1920-40GC), a 3D laser scanner 

(Velodyne HDL-64E S3), and a GPS/IMU navigation system 

(OXTS RT3003G), all mounted on an SUV. Two cameras are 

arranged as stereo pairs with a 54 cm baseline and a 50° field 

of view, while the LiDAR is positioned behind the central 

camera, and the GPS/IMU system is located at the rear. 

Accurate spatial alignment between the cameras and LiDAR is 

achieved through calibration, and timesynchronization is 

maintained using GPS clocks.  

 

The dataset was constructed using an SUV equipped 

with multiple cameras, a 3D laser scanner, and a GPS/IMU 

navigation system. The cameras were used to capture stereo 

images, and the LiDAR provided point clouds for disparity 
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label generation. The stereo pair had a baseline distance of 54 

cm and a field of view of 50 degrees. The dataset includes 

over 1 million frames, from which 174,437 frames are used 

for training and 7,751 frames for testing. Disparity labels were 

generated by integrating point clouds from multiple frames to 

increase the number of valid pixels. The quality of the labels 

was further enhanced using a model-guided filtering strategy. 

 

The LiDAR point clouds acquired are sparse, 

especially at greater distances. When points from a single 

frame are projected onto an image plane, only a few pixels in 

the image contain valid values. To increase the number of 

valid pixels in a single frame, we integrate and fuse point 

clouds from adjacent frames, as shown in Fig. 3. The data 

fusion process can be expressed as... 

 

 (1) 

 

According to calibration matrices, each LiDAR point 

 

(2) 

 

where the Prect is the 3 × 4 intrinsic matrix of left 

referenced camera, and the Rrect is the 4 × 4 calibrated matrix 

between stereo cameras. 

 

4.2Model-Guided Filtering 

 

Model-guided filtering with LiDAR is an advanced 

method for producing high-quality disparity labels, crucial for 

training autonomous systems. This process involves using 

stereo input images and LiDAR data to create precise and 

diverse training datasets. The approach starts with cloud 

fusion, where multiple LiDAR frames are combined to form a 

comprehensive point cloud. This fused data undergoes a 

projection step to align it with stereo images, creating an 

initial disparity map. 

 

GuideNet, a specialized model, refines this map 

through iterative filtering. Initially, a pretrained version of 

GuideNet generates a guided disparity map, which undergoes 

primary filtering to remove inaccuracies. The finetuned 

GuideNet then applies secondary filtering, further enhancing 

label quality. This iterative process addresses issues like long-

tail distortion, improving the representation of complex 

environments. By leveraging LiDAR's depth perception, the 

approach ensures that training data is both accurate and 

diverse, enhancing model performance across varied 

conditions. This strategy ultimately leads to more robust and 

adaptable autonomous systems capable of navigating 

challenging scenarios. 

 

 

(3) 

 

One of the significant challenges in LiDAR data 

processing is long-tail distortion, where dynamic objects 

introduce errors in disparity maps. The model-guided filtering 

process effectively addresses this issue by iteratively refining 

the disparity labels. By ensuring consistent and accurate data, 

this method enhances the overall reliability of training 

datasets. 

 

 
(Fig 4) 

 

LiDAR's depth perception capabilities are 

instrumental in creating detailed environmental 

representations. This ability allows the system to capture 

complex scenes accurately, even in challenging conditions 

such as varying light and weather. The integration of precise 

depth information improves the training process, making 

autonomous systems more robust and adaptable to real-world 

scenarios. By employing model-guided filtering with LiDAR, 

the training datasets for autonomous systems become 

significantly more accurate and diverse. This approach not 

only improves the system's ability to navigate complex 

environments but also enhances its adaptability to unforeseen 

challenges. Ultimately, this leads to safer and more reliable 

autonomous vehicles capable of operating effectively in 

diverse conditions. 

 

V. EVALUATION METRICES 

 

To accurately assess the performance of stereo 

matching methods, two primary evaluation metrics—distance-

aware metrics and semantic-aware metrics—are employed. 

These metrics offer a comprehensive evaluation of how well 

the system performs across different conditions and object 
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types, ensuring that the model's predictions are reliable in real-

world scenarios. 

 

5.1 Distance-Aware Metrics 

 

Distance-aware metrics are specifically designed to 

evaluate stereo matching performance across varying 

distances, addressing the challenge of maintaining accuracy in 

diverse range conditions. These metrics are crucial because the 

accuracy of disparity predictions can significantly vary 

depending on the proximity of objects to the sensor, especially 

in real-world driving environments where distances can range 

from a few meters to hundreds of meters. 

 

Key Metrics: 

 

1. Absolute Relative Difference (ARD): 

 

o Definition: ARD measures the relative error 

between the predicted disparity values and 

the ground-truth values within specific depth 

intervals. It is calculated as the absolute 

difference between predicted and actual 

disparities, normalized by the actual 

disparity. 

 

o Purpose: ARD provides a detailed 

evaluation of stereo matching performance 

at different distances, ensuring that the 

model's accuracy is assessed not just at a 

single average value but across short, 

middle, and long-range distances. This 

granular approach highlights how the model 

performs when objects are near versus when 

they are far, which is essential for 

applications like autonomous driving, where 

precise distance measurement is critical for 

safety. 

 

2. Global Difference (GD): 

 

o Definition: GD is an aggregate metric that 

sums up the ARD values across all defined 

distance intervals, providing a holistic 

measure of the model's performance across 

varying ranges. 

 

o Purpose: By aggregating errors from 

different distance intervals, GD offers a 

comprehensive overview of the stereo 

matching system's overall accuracy. This 

metric helps identify any biases the model 

might have toward specific ranges, such as 

performing better at short ranges but poorly 

at longer distances, thus guiding further 

model adjustments and training. 

 

5.2 Semantic-Aware Metrics 

 

Semantic-aware metrics focus on the accuracy of 

stereo matching in recognizing and representing various object 

categories in complex scenes, such as those encountered in 

autonomous driving. These metrics are essential because 

different object types—like vehicles, pedestrians, or road 

signs—pose unique challenges for disparity estimation. 

Evaluating performance across these categories ensures the 

model is robust and reliable across a wide array of real-world 

objects. 

 

Key Metric: 

 

1. Matching Rate (MR): 

 

o Definition: MR quantifies the percentage of 

correctly matched disparity values for 

objects belonging to specific semantic 

categories. It evaluates the accuracy of 

disparity predictions for each object type, 

such as cars, pedestrians, cyclists, or static 

obstacles. 

 

o Purpose: By calculating MR for various 

object categories, semantic-aware metrics 

provide insights into how well the stereo 

matching system performs in accurately 

representing each type of object in the scene. 

For instance, accurate disparity estimation of 

vehicles is crucial for maintaining safe 

distances, while precise pedestrian 

recognition ensures effective obstacle 

avoidance. This metric helps developers 

fine-tune models to improve performance in 

critical driving scenarios. 

 

Together, distance-aware and semantic-aware metrics 

offer a nuanced evaluation framework that goes beyond 

simple accuracy measurements. They help identify specific 

strengths and weaknesses in the stereo matching process, 

allowing for targeted improvements. For autonomous driving 

systems, these metrics are vital for ensuring that models can 

accurately interpret the complex and dynamic environments 

they navigate, ultimately leading to safer and more effective 

operations. 
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                               V. EXPERIMENTS 

 

The experimental section provides a comprehensive 

analysis of the performance of the proposed methods, 

including the GuideNet model, against established 

benchmarks. This analysis is conducted through a detailed 

comparison of datasets and evaluation metrics, highlighting 

the strengths of the new approaches introduced in this work. 

By assessing the efficiency and accuracy of disparity 

predictions, the experiments underscore the effectiveness of 

the DrivingStereo dataset and the novel evaluation metrics in 

diverse driving scenarios. 

 

5.1 Dataset and Method Comparison 

 

5.1.1. Overview of the DrivingStereo Dataset: 

 

The DrivingStereo dataset is a large-scale, high-quality stereo 

dataset specifically designed for autonomous driving 

applications. It provides a diverse range of driving scenarios 

with challenging conditions, such as varying lighting, weather, 

and occlusions, making it a robust benchmark for testing 

stereo matching algorithms. Compared to traditional datasets, 

DrivingStereo offers richer semantic information and higher-

resolution disparity maps, which are crucial for accurate depth 

estimation in real-world environments. 

 

5.1.2. Comparison with Existing Datasets: 

 

• KITTI Dataset: While KITTI has been widely used 

for stereo matching tasks, it is limited in terms of 

scene diversity and semantic complexity. The 

DrivingStereo dataset expands on these aspects by 

providing more varied driving scenarios, including 

urban, suburban, and highway settings. Additionally, 

it includes a broader range of weather conditions and 

times of day, such as fog, rain, and night-time scenes, 

which are underrepresented in KITTI. 

 

• Middlebury Dataset: Middlebury focuses on indoor 

and less dynamic scenes with high-quality ground 

truth but lacks the scale and contextual variety 

required for autonomous driving tasks. In contrast, 

DrivingStereo captures the complexities of outdoor 

driving environments, providing a more relevant 

testbed for evaluating stereo matching methods in the 

context of real-world automotive applications. 

 

 

5.1.3. Method Comparison and Performance Evaluation: 

 

The experiments also compare the performance of various 

stereo matching models using the DrivingStereo dataset and 

novel evaluation metrics, emphasizing the strengths of the 

GuideNet model. 

 

• GuideNet Model:GuideNet, used for generating 

guided disparity maps, plays a pivotal role in 

improving stereo matching accuracy. It utilizes pre-

trained and fine-tuned versions to progressively 

refine disparity predictions, which is a critical 

advantage in accurately depicting depth in complex 

driving scenarios. 

 

• Model Efficiency and Accuracy: Compared to 

existing methods, such as traditional CNN-based 

stereo matching models, GuideNet shows superior 

efficiency and accuracy in generating disparity maps. 

This is largely due to its architecture, which 

integrates a multi-stage filtering approach that 

iteratively refines predictions, significantly reducing 

errors in disparity estimation across both short and 

long ranges. 

 

 

5.1.4. Evaluation Metrics Impact: 

 

The adoption of distance-aware and semantic-aware 

metrics provides a more detailed and relevant assessment of 

stereo matching performance compared to traditional 

evaluation methods. These metrics allow for an in-depth 

analysis of how well stereo matching models perform across 

varying distances and object categories, highlighting areas 

where traditional models may falter. 

 

• Distance-Aware Metrics Performance: The 

experiments reveal that the distance-aware metrics 

used in conjunction with the DrivingStereo dataset 

help identify specific performance gains in short, 

middle, and long-distance disparity estimations. This 

level of detail is crucial for refining models to handle 

diverse driving conditions more effectively. 

 

• Semantic-Aware Metrics Performance: By 

evaluating stereo matching accuracy across different 

semantic categories (e.g., vehicles, pedestrians), the 

experiments demonstrate that GuideNet and the 

DrivingStereo dataset better capture critical features 

needed for safe and reliable autonomous driving. 

This leads to more accurate object recognition and 

distance estimation, enhancing the overall system 

performance in real-world scenarios. 
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5.1.5. Key Findings and Advantages: 

 

The experimental results highlight several advantages of the 

DrivingStereo dataset and the GuideNet model: 

 

• Improved Disparity Accuracy:GuideNet's guided 

approach significantly reduces long-tail distortions in 

disparity predictions, resulting in more accurate and 

reliable depth maps across a wide range of 

conditions. 

 

• Enhanced Performance in Diverse Scenarios: The 

DrivingStereo dataset's diverse scenes allow for more 

rigorous testing and validation, showing clear 

improvements in handling complex driving 

environments compared to traditional datasets 

. 

• Efficient Model Training and Evaluation: The 

combination of high-quality data and targeted 

evaluation metrics supports efficient model training, 

leading to faster convergence and better overall 

model performance. 

 

                              VI. CONCLUSION 

 

The experiments conclusively demonstrate that the 

DrivingStereo dataset, along with GuideNet and the new 

evaluation metrics, sets a new standard in stereo matching 

performance for autonomous driving. By addressing the 

limitations of existing datasets and methods, this approach 

provides a more comprehensive and accurate assessment 

framework, leading to significant advancements in stereo data 

quality, model robustness, and real-world application 

effectiveness. 
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