Fuzzy Tri-Magic Labeling of Some Unicyclic Graphs

Dr. C. Monigeetha

¹Assistant Professor,Dept of Mathematics Sri Muthukumaran Arts and Science College, Chikkarayapuram(Near Mangadu), Chennai600 069, Tamil Nadu, India.

Abstract- To prove that the graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n admits fuzzy trimagic labeling for $n \ge 6$ and $m \ge 3$. The methods involve considering G to be a finite, simple, undirected, and nontrivial graph. A fuzzy graph is said to admit tri-magic labeling if the number of magic membership values K_i 's and K_j 's($1 \le i \le 3$) differ by atmost 1 and $|K_i - K_j| \le \frac{2}{10^r}$ for $1\le i, j \le 3, r \ge 2$. The fuzzy graph which admits a tri-magic labeling is called a fuzzy tri-magic labeling graph. The fuzzy tri-magic labeling graphs are denoted by $T_{m_0}G$. This study has proved that the graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n admits fuzzy tri-magic labeling for $n \ge 6$ and $m \ge 3$. This study explains the fuzzy tri-magic labeling of some unicyclic graphs.

Keywords- Fuzzy labeling, Fuzzy tri-magic labeling, Magic membership value, Star graph, Unicyclic graph.

I. INTRODUCTION

Graph labeling was first introduced in the mid-1960s. A brief explanation of the various types of graph labeling is given by Joseph A. Gallian in hisbook A Dynamic Survey of Graph Labeling[1]. The graphs considered here are finite, simple, undirected, and nontrivial. Frank Harary, in his book Graph Theory [2], has standardized the terminology of graph theory and comprehensively treated the theorems based on it.Graph theory has a good development in the graph labeling and has a wide range of applications. Fuzzy is a newly emerging mathematical framework to exhibit the phenomenon of uncertainty in real-life tribulations. A fuzzy set is defined mathematically by assigning a value to each possible individual in the universe of discourse, representing its grade or membership which corresponds to the degree to which that individual is similar to or compatible with the concept represented by the fuzzy set. A complete bipartite graph with one vertex in one partition and n vertices in another partition is said to be a star graph, and it is denoted by $S_{1,n}$. Ameenal Bibi and Devi [3] have proved that some graphs admit fuzzy bimagic labeling. We introduced a novel theory of the fuzzy trimagic labeling that was inspired by the theory of fuzzy bimagic labeling. Also, we have proved that some star-related graphs are fuzzy tri-magic [4]. If a connected graph G contains exactly one cycle, then it is called a unicyclic graph. Sumathi,

Mahalakshmi and Rathi [5] have proved various types of unicyclic graphs admitting quotient-3 labeling. Sumathi and Suresh Kumar [6] have proved various types of unicyclic graphs with pendant edges admitting fuzzy quotient-3 labeling.Likewise in this study we have proved that the graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n admits fuzzy tri-magic labeling for $n \ge 6$ and $m \ge 3$.

II. METHODOLOGY

Definition 1 Fuzzy graph

A fuzzy graph $G:(\sigma,\mu)$ is a pair of functions $\sigma: V \to [0,1]$ and $\mu: V \times V \to [0,1]$, where for all $u, v \in V$, we have $\mu(u, v) \leq \sigma(u) \wedge \sigma(v)$.

Definition 2 Fuzzy Labeling

Let G = (V,E) be a graph, the fuzzy graph $G: (\sigma, \mu)$ is said to have a fuzzy labeling, if $\sigma: V \to [0,1]$ and $\mu: V \times V \to [0,1]$ is bijective such that the membership value of edges and vertices is distinct and $\mu(uv) \leq \sigma(u) \wedge \sigma(v)$ for all $u, v \in V$.

Definition 3 Magic membership value (MMV)

Let $G: (\sigma, \mu)$ be a fuzzy graph; the induced map $g: E(G) \rightarrow [0, 1]$ defined by

 $g(uv) = \sigma(u)_+ \mu(uv) + \sigma(v)$ is said to be a magic membership value. It is denoted by MMV [6].

Definition 4 Fuzzy tri-magic labeling

A fuzzy graph is said to admit tri-magic labeling if the magic membership values K_i 's,

 $1 \le i \le 3$ are constants where number of K_i 's and K_j 's differ by at most 1 and $|K_i - K_j| \le \frac{2}{10^r}$ for $1 \le i, j \le 3, r \ge 2$.

Definition 5 Fuzzy tri-magic labeling graph

A fuzzy labeling graph which admits tri-magic labeling is called a fuzzy tri-magic labeling graph. The fuzzy tri-magic labeling graphs are denoted by $\vec{T}m_0G$.

Definition 6 Unicyclic graph

A unicyclic graph is a connected graph containing exactly one cycle [2, 4].

III. RESULTS AND DISCUSSION

Theorem 1: The graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n admits fuzzy tri-magic labeling for $n \ge 6$ and $m \ge 3$.

Proof:

Let G be a graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n . Let the vertex set and edge set of G be

$$\begin{split} V(G) &= \left\{ v_j : 1 \le j \le n \right\} \cup \left\{ u_j : 1 \le j \le m \right\}_{\text{and}} \\ E(G) \\ \left\{ v_j v_{j+1} : 1 \le j \le n-1 \right\} \cup \left\{ v_1 v_n \right\} \cup \left\{ v_n u_j : 1 \le j \le m \right\} \end{split}$$

$$|V(G)| = _{m+n \text{ and }} |E(G)| = _{m+n}$$

Let $r \ge 2$ be any positive integer.

Define
$$\sigma: V \to [0, 1]$$
 such that
 $\sigma(v_j) = (6n + 2m - 2j) \frac{1}{10^r} 1 \le j \le n$

Define
$$\mu: V \times V \to [0,1]$$
 by
 $\mu(v_n u_j) = (4n - 3 + j) \frac{1}{10^r}$ for $1 \le j \le m$
 $\mu(v_1 v_n) = \frac{2n - 1}{10^r}$

Case (i) If $n \equiv 0 \pmod{6}$

Subcase (i) If $m \equiv 0 \pmod{3}$ $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{ for } 1} \le j \le \frac{m}{3}$ $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r \text{ for } \frac{m}{3} + 1} \le j \le \frac{2m}{3}$ $\sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r \text{ for } \frac{2m}{3}} + 1 \le j \le m$ $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{ for } 1 \le j \le \frac{n}{3}$ $\mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \text{ for } \frac{n}{3} + 1 \le j \le \frac{2n}{3}$ $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{ for } \frac{2n}{3} + 1 \le j \le n - 1$

Subcase (ii) If
$$m \equiv 1 \pmod{3}$$

 $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{ for } 1} \le j \le \frac{m-1}{3}$
 $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r \text{ for } \frac{m-1}{3} + 1} \le j \le 2(\frac{m-1}{3})$
 $\sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r \text{ for } 2(\frac{m-1}{3})} + 1 \le j \le m$
 $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{ for } 1 \le j \le \frac{n}{3}$
 $\mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \text{ for } \frac{n}{3} + 1 \le j \le \frac{2n}{3}$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{ for } \frac{2n}{3} + 1 \le j \le n - 1$

 $\begin{aligned} & \text{Subcase (iii) If } m \equiv 2(mod \ 3) \\ & \sigma(u_j) = (4n + 2m - j) \frac{1}{10^r} \text{for } 1 \leq j \leq \frac{m-2}{3} \\ & \sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r} \text{for } \frac{m-2}{3} + 1 \leq j \leq \frac{2m-1}{3} \\ & \sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r} \text{for } \frac{2m-1}{3} + 1 \leq j \leq m \\ & \mu(v_j v_{j+1}) = 1 + 4(j-1) \frac{1}{10^r} \quad \text{for } 1 \leq j \leq \frac{n}{3} \\ & \mu(v_j v_{j+1}) = 2 + 4(j-1) \frac{1}{10^r} \quad \text{for } \frac{n}{3} + 1 \leq j \leq \frac{2n}{3} \\ & \mu(v_j v_{j+1}) = 3 + 4(j-1) \frac{1}{10^r} \quad \text{for } \frac{2n}{3} + 1 \leq j \leq n-1 \end{aligned}$

Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ are given in table 1.

Table 1: Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ for the graph obtained by attaching star graph $S_{1,m}$ to the end

vertex of the cycle C_n for $n \equiv 0 \pmod{3}$, $m \equiv 0 \pmod{3}$, $1 \pmod{3}$ and $2 \pmod{3}$

Natureo f n	Natureof m	Edges		Number of K_i 's, $1 \le i \le 3$
$n = 0 \pmod{3}$	m ≡ 0(mod 3)	$\begin{array}{l} g(v_{j},v_{j+1}) \text{ if } \frac{zn}{3} + 1 \leq j \leq n-1 \\ g(v_{1},v_{n}) \\ g(v_{n},v_{j}) & \text{ if } 1 \leq j \leq \frac{m}{3} \end{array}$	$(12n + 4m - 3)\frac{1}{10^{r}}$ for i = 1	$\frac{m+n}{3}$ for i = 1
		$\begin{array}{l}g\left(v_{j}v_{j+1}\right) \;\; \mathrm{if}\; \frac{n}{3}+1\;\leq j\leq \frac{2n}{3}\\ g\left(v_{n}u_{j}\right) \;\; \mathrm{if}\; \frac{m}{3}+1\leq j\leq \frac{2m}{3}\end{array}$	$(12n + 4m - 4)\frac{1}{10^r}$ for i = 2	$\frac{m+n}{3}$ for i = 2
		$g(v_j v_{j+1}) \text{ if } 1 \leq j \leq \frac{n}{3}$ $g(v_n u_j) \text{ if } \frac{2m}{3} + 1 \leq j \leq m$	$(12n + 4m - 5)\frac{1}{10^r}$ for i = 3	$\frac{m+n}{3}$ for i = 3
	$ \begin{array}{c} & g(v_{j} v_{j+1}) \text{ if } \frac{a^{m}}{3} + 1 \leq j \leq n-1 \\ g(v_{1} v_{n}) & g(v_{n} v_{j}) \\ \hline \\ & g(v_{n} u_{j}) & \text{ if } 1 \leq j \leq \frac{m-1}{3} \\ \hline \\ & g(v_{n} u_{j}) & \text{ if } \frac{m-1}{3} + 1 \leq j \leq \frac{m}{3} \\ g(v_{n} u_{j}) & \text{ if } \frac{m-1}{3} + 1 \leq j \leq \frac{m}{3} \\ \hline \\ & g(v_{n} u_{j}) & \text{ if } 1 \leq j \leq \frac{m}{3} \\ \hline \\ & g(v_{n} u_{j}) & \text{ if } 1 \leq j \leq \frac{m}{3} \\ \hline \\ & g(v_{n} u_{j}) & \text{ if } 2(\frac{m-1}{3}) + 1 \leq j \leq m \\ \end{array} $	$\begin{array}{l} g(v_{j} v_{j+1}) \text{ if } \frac{zn}{3} + 1 \leq j \leq n-1 \\ g(v_{1} v_{n}) \\ g(v_{n} u_{j}) \text{ if } 1 \leq j \leq \frac{m-1}{3} \end{array}$	$(12n + 4m - 3)\frac{1}{10^r}$ for i = 1	$\frac{m+n-1}{3}$ for i = 1
		$g(v_j v_{j+1}) \text{ if } \frac{n}{3} + 1 \le j \le \frac{2n}{3}$ $g(v_n u_j) \text{ if } \frac{m-1}{3} + 1 \le j \le 2(\frac{m-1}{3})$	$(12n + 4m - 4)\frac{1}{10^r}$ for i = 2	$\frac{\frac{m+n-1}{3}+1}{\text{for } i=2}$
		$(12n + 4m - 5)\frac{1}{10^r}$ for i = 3	$\frac{m+n-1}{3}+1$ for i = 3	
	m ≡ 2(mod 3)	$\begin{array}{l} g(v_{j},v_{j+1}) \text{ if } \frac{zn}{3} + 1 \leq j \leq n-1 \\ g(v_{1},v_{n}) \\ g(v_{n},v_{j}) \text{ if } 1 \leq j \leq \frac{m-2}{3} \end{array}$	$(12n + 4m - 3)\frac{1}{10^{r}}$ for i = 1	$\frac{m+n-2}{3}$ for i = 1
		$g(v_j v_{j+1}) \text{ if } \frac{n}{3} + 1 \le j \le \frac{2n}{3}$ $g(v_n u_j) \text{ if } \frac{m-2}{3} + 1 \le j \le \frac{2m-1}{3}$	$(12n + 4m - 4)\frac{1}{10^r}$ for i = 2	$\frac{m+n-2}{3}+1$ for i = 2
		$g(v_j v_{j+1})$ if $1 \le j \le \frac{n}{3}$ $g(v_n u_j)$ if $\frac{2m-1}{3} + 1 \le j \le m$	$(12n + 4m - 5)\frac{1}{10^r}$ for i = 3	$\frac{m+n-2}{3}+1$ for i = 3

Case (ii) If $n \equiv 1 \pmod{6}$

Subcase (i) If
$$m \equiv 0 \pmod{3}$$

 $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{ for } 1} \le j \le \frac{m}{3}$
 $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r \text{ for } \frac{m}{3} + 1} \le j \le \frac{2m}{3}$
 $\sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r \text{ for } \frac{2m}{3}} + 1 \le j \le m$
 $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{ for } 1 \le j \le \frac{n+2}{3}$
 $\mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \text{ for } 1 \le j \le \frac{n+2}{3}$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{ for } 2\left(\frac{n+2}{3}\right) \le j \le n - 1$

$$\begin{aligned} & \text{Subcase (ii) If } m \equiv 1 \pmod{3} \\ & \sigma(u_j) = (4n + 2m - j) \frac{1}{10^r} \text{for } 1 \leq j \leq \frac{m+2}{3} \\ & \sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r} \text{for } \frac{m+2}{3} + 1 \\ & \leq j \leq 2(\frac{m+2}{3}) - 1 \\ & \sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r} \text{for } 2(\frac{m+2}{3}) \leq j \leq m \\ & \mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \quad \text{for } 1 \leq j \leq \frac{n+2}{3} \\ & \mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \quad \text{for } 1 \leq j \leq \frac{n+2}{3} \\ & \mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \quad \text{for } 2\left(\frac{n+2}{3}\right) \leq j \leq n - 1 \end{aligned}$$

 $\begin{aligned} & \text{Subcase (iii) If } m \equiv 2(mod \ 3) \\ & \sigma(u_j) = (4n + 2m - j) \frac{1}{10^r} \text{for } 1 \leq j \leq \frac{m+1}{3} \\ & \sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r} \text{for } \frac{m+1}{3} + 1 \leq j \leq 2(\frac{m+1}{3}) \\ & \sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r} \text{for } 2(\frac{m+1}{3}) + 1 \leq j \leq m \\ & \mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \quad \text{for } 1 \leq j \leq \frac{n+2}{3} \\ & \mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \quad \text{for } 1 \leq j \leq \frac{n+2}{3} \\ & \mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \quad \text{for } 2\left(\frac{n+2}{3}\right) \leq j \leq n - 1 \end{aligned}$

Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ are given in table 2.

Table 2: Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ for the graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n for $n \equiv 1 \pmod{3}$,

 $m \equiv 0 \pmod{3}, 1 \pmod{3}$ and $2 \pmod{3}$

Natureof	Natural			Number of
n	m	Edges	1≤i≤3	$K_i's, \\ 1 \le i, \le 3$
$n = 1 \pmod{3}$	m ≡ 0(mod 3)	$\begin{array}{l} g(v_{j}, v_{j+1}) \text{ if } 2(\frac{n+2}{3}) \leq j \leq n-1 \\ g(v_{1}, v_{n}) \\ g(v_{n}u_{j}) \text{ if } 1 \leq j \leq \frac{m}{3} \end{array}$	$(12n + 4m - 3) \frac{1}{10^{r}}$ for i = 1	$\frac{m+n-1}{3}$ for $i = 1$
		$\begin{array}{l}g(v_{j},v_{j+1})\mathrm{if}\frac{n+z}{3}+1\leq j\leq 2(\frac{n+z}{3})-1\\g(v_{n}u_{j})\mathrm{if}\frac{m}{3}+1\leq j\leq \frac{2m}{3}\end{array}$	$(12n + 4m - 4) \frac{1}{10^{r}}$ for i = 2	$\frac{m+n-1}{3}$ for i = 2
		$ \begin{array}{l} g\left(v_{j},v_{j+1}\right) \ \text{ if } 1 \leq j \leq \frac{n+2}{3} \\ g\left(v_{n}u_{j}\right) \ \text{ if } \frac{2m}{3} + 1 \leq j \leq m \end{array} $	$(12n + 4m - 5)\frac{1}{10^{r}}$ for i = 3	$\frac{m+n-1}{3}+1$ for i = 3
	$m \equiv 1 (mod \ 3)$	$\begin{array}{l} g(v_{j}, v_{j+1}) & \text{if } 2\left(\frac{n+2}{3}\right) \leq j \leq n-1 \\ g(v_{1}, v_{n}) \\ g(v_{n}, u_{j}) & \text{if } 1 \leq j \leq \frac{m+2}{3} \end{array}$	$(12n + 4m - 3) \frac{1}{10^r}$ for i = 1	$\frac{m+n-2}{3} + 1$ for j = 1
		$g(v_j, v_{j+1}) \text{ if } \frac{m+2}{3} + 1 \le j \le 2\left(\frac{m+2}{3}\right) - 1$ $g(v_n u_j) \text{ if } \frac{m+2}{3} + 1 \le j \le 2\left(\frac{m+2}{3}\right) - 1$	$(12n + 4m - 4)\frac{1}{10^r}$ for i = 2	$\frac{m+n-2}{3}$ for i = 2
		$g(v_j v_{j+1})$ if $1 \le j \le \frac{1}{3}$ $g(v_n u_j)$ if $2(\frac{m+2}{3}) \le j \le m$	$(12n + 4m - 5) \frac{1}{10^{7}}$ for i = 3	$\frac{m+n-1}{3}$ for i = 2 $\frac{m+n-1}{3} + 1$ for i = 3 $\frac{m+n-2}{3} + 1$ for i = 1 $\frac{m+n-2}{3} + 1$ for i = 2 $\frac{m+n-2}{3} + 1$ for i = 1 $\frac{m+n}{3}$ for i = 2 $\frac{m+n}{3}$ for i = 2
	m ≡ 2(mod 3)	$g(v_j, v_{j+1})$ if $2(\frac{n+2}{3}) \le j \le n-1$ $g(v_1, v_n)$ $g(v_n, u_j)$ if $1 \le j \le \frac{m+1}{3}$	$(12n + 4m - 3) \frac{1}{10^r}$ for i = 1	$\frac{m+n}{3}$ for i = 1
		$g(v_j, v_{j+1}) \text{ if } \frac{n+2}{3} + 1 \le j \le 2\left(\frac{n+2}{3}\right) - 1$ $g(v_n u_j) \text{ if } \frac{n+1}{3} + 1 \le j \le 2\left(\frac{n+1}{3}\right)$	$(12n + 4m - 4)\frac{1}{10^r}$ for i = 2	$\frac{m+n}{3}$ for i = 2
		$g(v_j v_{j+1})$ if $1 \le j \le \frac{m+2}{3}$ $g(v_n u_j)$ if $2(\frac{m+1}{3}) + 1 \le j \le m$	$(12n + 4m - 5)\frac{1}{10^r}$ for i = 3	$\frac{m+n}{3}$ for i = 3

Case (iii) If
$$n \equiv 2 \pmod{6}$$

Subcase (i) If $m \equiv 0 \pmod{3}$
 $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{for } 1} \le j \le \frac{m}{3}$
 $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r \text{for } \frac{m}{3} + 1} \le j \le \frac{2m}{3}$
 $\sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r \text{for } \frac{2m}{3}} + 1 \le j \le m$
 $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{for } 1 \le j \le \frac{n+1}{3}$
 $\mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2\left(\frac{n+1}{3}\right)$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2\left(\frac{n+1}{3}\right)$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2\left(\frac{n+1}{3}\right)$

Subcase (ii) If
$$m \equiv 1 \pmod{3}$$

 $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r} \text{for } 1 \le j \le \frac{m+2}{3}$
 $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r} \frac{m+2}{3} + 1$
 $\le j \le 2(\frac{m+2}{3}) - 1$
 $\sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r} \text{for } 2(\frac{m+2}{3}) \le j \le m$
 $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{for } 1 \le j \le \frac{n+1}{3}$
 $\mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2(\frac{n+1}{3})$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2(\frac{n+1}{3})$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2(\frac{n+1}{3})$

Subcase (iii) If $m \equiv 2 \pmod{3}$ $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{for } 1} \le j \le \frac{m+1}{2}$ $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r \text{for } \frac{m+1}{2} + 1} \le j \le 2(\frac{m+1}{2})$

$$\begin{split} \sigma \Big(u_j \Big) &= (4n + 2m - 2 - j) \frac{1}{10^r} \text{for } 2(\frac{m+1}{3}) + \frac{1}{1} \leq j \leq m \\ \mu \Big(v_j v_{j+1} \Big) &= 1 + 4(j-1) \frac{1}{10^r} \quad \text{for } 1 \leq j \leq \frac{n+1}{3} \\ \mu \Big(v_j v_{j+1} \Big) &= 2 + 4(j-1) \frac{1}{10^r} \quad \text{for } \frac{n+1}{3} + 1 \leq j \leq 2\left(\frac{n+1}{3}\right) \\ \mu \Big(v_j v_{j+1} \Big) &= 3 + 4(j-1) \frac{1}{10^r} \quad \text{for } 2\left(\frac{n+1}{3}\right) + 1 \leq j \leq n-1 \end{split}$$

Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ are given in table 3.

Table 3: Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ for the graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n for $n \equiv 2 \pmod{3}$,

	•			
$m \equiv 0 \pmod{3}$	3).1	(mod 3)and 2(mod	3)

Natureo f n	Natureof m	Edges	$ \begin{array}{l} \text{MMV } K_i ' s, \\ 1 \leq i \leq 3 \end{array} $	Number of K_i 's, $1 \le i \le 3$
n = 2(mod 3)	m ≡ 0(mod 3)	$\begin{array}{l} g(v_{j}, v_{j+1}) \text{ if } 2\left(\frac{n+1}{3}\right) + 1 \leq j \leq n-1 \\ g(v_{1}, v_{n}) \\ g(v_{n}u_{j}) \text{ if } 1 \leq j \leq \frac{m}{3} \end{array}$	$(12n + 4m - 3) \frac{1}{10^r}$ for i = 1	$\frac{m+n-2}{3}$ for $i = 1$
		$\begin{array}{l}g\left(v_{j}v_{j+1}\right)\mathrm{if}\frac{n+1}{3}+1\leq j\leq 2(\frac{n+1}{3})\\g\left(v_{n}u_{j}\right)\mathrm{if}\frac{m}{3}+1\leq j\leq \frac{2m}{3}\end{array}$	$(12n + 4m - 4) \frac{1}{10^r}$ for i = 2	$\frac{m+n-2}{3}+1 \text{for } i=2$
		$ \begin{array}{l} g(v_j v_{j+1}) \text{if } 1 \leq j \leq \frac{m+1}{3} \\ g(v_n u_j) \text{if } \frac{2m}{3} + 1 \leq j \leq m \end{array} $	$(12n + 4m - 5)\frac{1}{10^{r}}$ for i = 3	$\frac{m+n-2}{3} + 1 \text{ for } i = 3$
	n ≡ 1 (mod 3)	$g(v_j, v_{j+1})$ if $2(\frac{n+1}{3}) + 1 \le j \le n - 1$ $g(v_1, v_n)$ $g(v_n, u_j)$ if $1 \le j \le \frac{m+2}{3}$	$(12n + 4m - 3) \frac{1}{10^{r}}$ for i = 1	$\frac{m+n}{3}$ for $i = 1$
		$g(v_j v_{j+1})$ if $\frac{n+1}{3} + 1 \le j \le 2(\frac{n+1}{3})$ $g(v_n u_j)$ if $\frac{m+2}{3} + 1 \le j \le 2(\frac{m+2}{3}) - 1$	$(12n + 4m - 4) \frac{1}{10^{r}}$ for i = 2	$\frac{m+n}{3} \text{ for } i = 2$
	ſ	$g(v_j v_{j+1}) \text{ if } 1 \leq j \leq \frac{n+1}{3}$ $g(v_n u_j) \text{ if } 2(\frac{m+2}{3}) \leq j \leq m$	$(12n + 4m - 5) \frac{1}{10^{\mu}}$ for i = 3	$\frac{m+n}{3}$ for i = 3
	m ≣ 2(mod 3)	$g(v_j, v_{j+1})$ if $2(\frac{n+1}{3}) + 1 \le j \le n-1$ $g(v_1, v_n)$ $g(v_n, u_j)$ if $1 \le j \le \frac{m+1}{3}$	$(12n + 4m - 3) \frac{1}{10^{r}}$ for i = 1	$\frac{m+n-1}{3}$ for i = 1
		$g(v_j v_{j+1})$ if $\frac{n+1}{3} + 1 \le j \le 2(\frac{n+1}{3})$ $g(v_n u_j)$ if $\frac{m+1}{3} + 1 \le j \le 2(\frac{m+1}{3})$	$(12n + 4m - 4) \frac{1}{10^r}$ for $i = 2$	$\frac{m+n-1}{3}$ + 1 for i = 2
		$g(v_j v_{j+1})$ if $1 \le j \le \frac{n+1}{3}$ $g(v_n u_j)$ if $2(\frac{m+1}{3}) + 1 \le j \le m$	$(12n + 4m - 5) \frac{1}{10^{r}}$ for i = 3	$\frac{m+n-1}{3}$ for i = 3

Case (iv) If $n \equiv 3 \pmod{6}$

Subcase (i) If $m \equiv 0 \pmod{3}$ $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{for } 1} \le j \le \frac{m}{3}$ $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r \text{for } \frac{m}{3} + 1} \le j \le \frac{2m}{3}$ $\sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r \text{for } \frac{2m}{3}} + 1 \le j \le m$ $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{for } 1 \le j \le \frac{n}{3}$ $\mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n}{3} + 1 \le j \le \frac{2n}{3}$ $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{2n}{3} + 1 \le j \le n - 1$

Subcase (ii) If $m \equiv 1 \pmod{3}$ $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{for } 1} \le j \le \frac{m-1}{3}$

$$\begin{aligned} \sigma(u_j) &= (4n + 2m - 1 - j) \frac{1}{10^r \text{for}} \frac{m-1}{3} + 1 \leq j \leq 2(\frac{m-1}{3}) \\ \sigma(u_j) &= (4n + 2m - 2 - j) \frac{1}{10^r \text{for}} 2\left(\frac{m-1}{3}\right) + 1 \leq j \leq m \\ \mu(v_j v_{j+1}) &= 1 + 4(j-1) \frac{1}{10^r} \quad \text{for} \ 1 \leq j \leq \frac{n}{3} \\ \mu(v_j v_{j+1}) &= 2 + 4(j-1) \frac{1}{10^r} \quad \text{for} \ \frac{n}{3} + 1 \leq j \leq \frac{2n}{3} \\ \mu(v_j v_{j+1}) &= 3 + 4(j-1) \frac{1}{10^r} \quad \text{for} \ \frac{2n}{3} + 1 \leq j \leq n-1 \end{aligned}$$

Subcase (iii) If
$$m \equiv 2 \pmod{3}$$

 $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{for } 1} \le j \le \frac{m-2}{3}$
 $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r \text{for } \frac{m-2}{3} + 1} \le j \le \frac{2m-1}{3}$
 $\sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r \text{for } \frac{2m-1}{3}} + 1 \le j \le m$
 $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{for } 1 \le j \le \frac{n}{3}$
 $\mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n}{3} + 1 \le j \le \frac{2n}{3}$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{2n}{3} + 1 \le j \le n - 1$

Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ are given in table 4.

Table 4: Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ for the graph obtained by attaching star graph $S_{1,m}$ to the end

vertex of the cycle C_n for $n \equiv 3 \pmod{3}$, $m \equiv 0 \pmod{3}$, $1 \pmod{3}$ and $2 \pmod{3}$

Natureo f n	Natureof m	Edges	$ \begin{array}{c} \text{MMV } K_i \ s, \\ 1 \le i \le 3 \end{array} $	Number of K_i 's, $1 \le i \le 3$
n = 2(mod 3)	m ≡ 0(mod 3)	$g(v_j, v_{j+1})$ if $\frac{z_n}{3} + 1 \le j \le n - 1$ $g(v_n v_n)$ $g(v_n u_j)$ if $1 \le j \le \frac{m}{3}$	$(12n + 4m - 3) \frac{1}{10^r}$ for i = 1	$\frac{m+n}{3}$ for $i = 1$
		$\begin{array}{l}g\left(v_{j}\;v_{j+1}\right)\mathrm{if}\frac{n}{3}+1\leq j\leq\frac{2n}{3}\\g\left(v_{n}u_{j}\right)\mathrm{if}\;\frac{m}{3}+1\leq j\leq\frac{2m}{3}\end{array}$	$(12n + 4m - 4) \frac{1}{10^{r}}$ for i = 2	$\frac{m+n}{3}$ for i = 2
		$\begin{array}{l} g(v_j v_{j+1}) \text{if } 1 \leq j \leq \frac{n}{3} \\ g(v_n u_j) \text{if } \frac{2m}{3} + 1 \leq j \leq m \end{array}$	$(12n + 4m - 5)\frac{1}{10^{y}}$ for i = 3	$\frac{m+n}{3}$ for $i = 3$
	m ≣ 1 (mod 3)	$g(v_j v_{j+1})$ if $\frac{2n}{3} + 1 \le j \le n - 1$ $g(v_1 v_n)$ $g(v_n u_j)$ if $1 \le j \le \frac{m-1}{3}$	$(12n + 4m - 3) \frac{1}{10^{7}}$ for i = 1	$\frac{m+n-1}{3}$ for i = 1
		$g(v_{j}, v_{j+1}) \text{ if } \frac{m}{3} + 1 \le j \le \frac{2m}{3}$ $g(v_{n}u_{j}) \text{ if } \frac{m-1}{3} + 1 \le j \le 2\left(\frac{m-1}{3}\right)$	$(12n + 4m - 4) \frac{1}{10^{r}}$ for i = 2	$\frac{m+n-1}{3}$ for i=2
		$g(v_j, v_{j+1}) \text{if } 1 \leq j \leq \frac{2}{3}$ $g(v_n u_j) \text{if } 2(\frac{m-1}{3}) + 1 \leq j \leq m$	$(12n + 4m - 5)\frac{1}{10^{\gamma}}$ for i = 3	$\begin{array}{c} K_{i}'s,\\ 1 \leq i \leq 3 \\ \hline \\ \frac{m+n}{3} \mbox{for } i = 1 \\ \hline \\ \frac{m+n}{3} \\ \mbox{for } i = 2 \\ \hline \\ \frac{m+n}{3} \\ \mbox{for } i = 2 \\ \hline \\ \frac{m+n-1}{3} \\ \mbox{for } i = 1 \\ \hline \\ \frac{m+n-1}{3} \\ \mbox{for } i = 1 \\ \hline \\ \frac{m+n-2}{3} \\ \mbox{for } i = 1 \\ \hline \\ \frac{m+n-2}{3} \\ \mbox{for } i = 1 \\ \hline \\ \frac{m+n-2}{3} \\ \mbox{for } i = 1 \\ \hline \\ \frac{m+n-2}{3} \\ \mbox{for } i = 1 \\ \hline \\ \frac{m+n-2}{3} \\ \mbox{for } i = 1 \\ \mbox{for } i = 1 \\ \hline \\ \frac{m+n-2}{3} \\ \mbox{for } i = 1 \\ \mbox{for } i = 3 \\ \mbox{for } i = 3 \\ \mbox{for } i = 1 \\ \mbox{for } i = 3 \\ \mbox{for } i = 1 \\ \mbox{for } i = 1 \\ \mbox{for } i = 3 \\ \mbox{for } i = 1 \\ \mbox{for } i = 1 \\ \mbox{for } i = 1 \\ \mbox{for } i = 3 \\ \mbox{for } i = 1 \\ \mbox{for } i = 1 \\ \mbox{for } i = 3 \\ \mbox{for } i = 1 \\ \mbox{for } i = 1 \\ \mbox{for } i = 3 \\ \mbox{for } i = 1 \\ f$
	od 3)	$\begin{array}{l} g(v_{j} v_{j+1}) \text{ if } \frac{en}{3} + 1 \leq j \leq n-1 \\ g(v_{1} v_{n}) \\ g(v_{n} u_{j}) \text{ if } 1 \leq j \leq \frac{m-2}{3} \end{array}$	$(12n + 4m - 3) \frac{1}{10^{r}}$ for i = 1	$\frac{m+n-2}{3}$ for i = 1
	m ≡ 2(m	$g(v_j v_{j+1})$ if $\frac{n}{3} + 1 \le j \le \frac{2n}{3}$ $g(v_n u_j)$ if $\frac{m-2}{3} + 1 \le j \le \frac{2m-1}{3}$	$(12n + 4m - 4)\frac{1}{10^{r}}$ for i = 2	$\frac{\frac{m+n-2}{3}}{i=2}$ + 1 for
	-	$g(v_j v_{j+1})$ if $1 \le j \le \frac{n}{3}$ $g(v_n u_j)$ if $\frac{2m-1}{3} + 1 \le j \le m$	$(12n + 4m - 5)\frac{1}{10^{r}}$ for i = 3	$\frac{m+n-2}{3} + 1$ for i = 3

Case (v) If $n \equiv 4 \pmod{6}$ Subcase (i) If $m \equiv 0 \pmod{3}$ $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{ for } 1} \le j \le \frac{m}{3}$

$$\begin{split} \sigma \Big(u_j \Big) &= (4n + 2m - 1 - j) \frac{1}{10^r} \text{for } \frac{m}{3} + 1 \leq j \leq \frac{2m}{3} \\ \sigma \Big(u_j \Big) &= (4n + 2m - 2 - j) \frac{1}{10^r} \text{for } \frac{2m}{3} + 1 \leq j \leq m \\ \mu \Big(v_j v_{j+1} \Big) &= 1 + 4(j-1) \frac{1}{10^r} \quad \text{for } 1 \leq j \leq \frac{n+2}{3} \\ \mu \Big(v_j v_{j+1} \Big) &= 2 + 4(j-1) \frac{1}{10^r} \quad \text{for } 1 \leq j \leq \frac{n+2}{3} \\ \mu \Big(v_j v_{j+1} \Big) &= 2 + 4(j-1) \frac{1}{10^r} \quad \text{for } 1 \leq j \leq n-1 \\ \mu \Big(v_j v_{j+1} \Big) &= 3 + 4(j-1) \frac{1}{10^r} \quad \text{for } 2 \left(\frac{n+2}{3} \right) \leq j \leq n-1 \end{split}$$

Subcase (ii) If $m \equiv 1 \pmod{3}$

$$\begin{split} \sigma(u_j) &= (4n+2m-j) \frac{1}{10^r} \text{for } 1 \leq j \leq \frac{m+2}{3} \\ \sigma(u_j) &= (4n+2m-1-j) \frac{1}{10^r} \text{for } \frac{m+2}{3} + 1 \\ \leq j \leq 2(\frac{m+2}{3}) - 1 \\ \sigma(u_j) &= (4n+2m-2-j) \frac{1}{10^r} 2\left(\frac{m+2}{3}\right) \leq j \leq m \\ \mu(v_j v_{j+1}) &= 1 + 4(j-1) \frac{1}{10^r} \text{ for } 1 \leq j \leq \frac{n+2}{3} \\ \mu(v_j v_{j+1}) &= 2 + 4(j-1) \frac{1}{10^r} \text{ for } 1 \leq j \leq \frac{n+2}{3} \\ \mu(v_j v_{j+1}) &= 3 + 4(j-1) \frac{1}{10^r} \text{ for } 2\left(\frac{n+2}{3}\right) \leq j \leq n-1 \end{split}$$

Subcase (iii) If
$$m \equiv 2 \pmod{3}$$

 $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r} \text{for } 1 \le j \le \frac{m+1}{3}$
 $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r} \text{for } \frac{m+1}{3} + 1 \le j \le 2(\frac{m+1}{3})$
 $\sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r} 2(\frac{m+1}{3}) + 1 \le j \le m$
 $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{ for } 1 \le j \le \frac{n+2}{3}$
 $\mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \text{ for } 1 \le j \le \frac{n+2}{3}$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{ for } 2(\frac{n+2}{3}) \le j \le n - 1$

Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ are given in table 5.

Table 5: Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ for the graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n for $n \equiv 4 \pmod{3}$, $m \equiv 0 \pmod{3}, 1 \pmod{3}$ and $2 \pmod{3}$.

Natureo f n	Natureof m	Edges	$ \begin{array}{l} \text{MMV } K_i's, \\ 1 \leq i \leq 3 \end{array} $	Number of K_i 's, $1 \le i \le 3$
n = 2 (mod 3)	m ≡ 0(mod 3)	$g(v_j, v_{j+1})$ if $2(\frac{n+2}{3}) \le j \le n-1$ $g(v_1, v_n)$ $g(v_n, u_j)$ if $1 \le j \le \frac{m}{3}$	(12n + 4m)	$\frac{m+n-1}{\underset{\text{for } i}{3}=1}$
		$ \begin{split} g\left(v_{j} v_{j+1}\right) & \text{if} \frac{n+2}{3} + 1 \leq j \leq 2 \left(\frac{n+2}{3}\right) - 1 \\ g\left(v_{n} u_{j}\right) & \text{if} \frac{m}{3} + 1 \leq j \leq \frac{2m}{3} \end{split} $	$(12n + 4m) - 4 = \frac{1}{10^{r}}$ for i = 2	$\frac{m+n-1}{3}$ for i = 2
		$ \begin{array}{l} g\left(v_{j},v_{j+1}\right) \ \text{if} \ 1 \leq j \leq \frac{n+2}{3} \\ g\left(v_{n}u_{j}\right) \ \text{if} \ \frac{2m}{3} + 1 \leq j \leq m \end{array} $	(12n + 4m) - 5) $\frac{1}{10^{7}}$ for i = 3	$\frac{m+n-1}{3}$ + 1 for i = 3
	$m \equiv 1(mod \ 3)$	$g(v_j v_{j+1}) \text{ if } 2\left(\frac{n+2}{3}\right) \le j \le n-1$ $g(v_1 v_n)$ $g(v_n u_j) \text{ if } 1 \le j \le \frac{m+2}{3}$	(12n + 4m) - 3) $\frac{1}{10^{r}}$ for i = 1	$\frac{m+n-2}{3}$ + 1 for i = 1
		$\begin{split} g(v_j v_{j+1}) &\text{if } \frac{n+2}{3} + 1 \leq j \leq 2 \binom{n+2}{3} - 1 \\ g(v_n u_j) &\text{if } \frac{m+2}{3} + 1 \leq j \leq 2 \binom{m+2}{3} - 1 \end{split}$	$(12n + 4m) - 4) \frac{1}{10^r}$ for i = 2	$\frac{m+n-2}{3}$ for i = 2
		$\begin{array}{l}g\left(v_{j}v_{j+1}\right) \;\; \mathrm{if}\; 1 \leq j \leq \frac{n+2}{3}\\g\left(v_{n}u_{j}\right) \;\; \mathrm{if}\; 2(\frac{m+2}{3}) \leq j \leq m\end{array}$	$(12n + 4m) = -5) \frac{1}{10^{r}} = 3$	$\frac{m+n-2}{3}$ + 1 for i = 3
	$m \equiv 2 (mod \ 3)$	$\begin{array}{l} g(v_j v_{j+1}) \text{ if } 2\left(\frac{n+2}{3}\right) \leq j \leq n-1 \\ g(v_1 v_n) \\ g(v_n u_j) \text{ if } 1 \leq j \leq \frac{m+1}{3} \end{array}$	(12n + 4m) - 3) $\frac{1}{10^{r}}$ for i = 1	$\frac{m+n}{3}$ for $i = 1$
		$\begin{array}{l}g(v_{j}v_{j+1})\mathrm{if}\frac{n+2}{3}+1\leq j\leq 2\left(\frac{n+2}{3}\right)-1\\g(v_{n}u_{j})\mathrm{if}\frac{m+1}{3}+1\leq j\leq 2\left(\frac{m+1}{3}\right)\end{array}$	$(12n + 4m) - 4 \frac{1}{10^{r}}$ for i = 2	$\frac{m+n}{3}$ for i = 2
		$g(v_j v_{j+1})$ if $1 \le j \le \frac{n+2}{3}$	(12n + 4m)	$\frac{m+n}{3}$ for i = 3

Case (vi) If
$$n \equiv 5 \pmod{6}$$

Subcase (i) If $m \equiv 0 \pmod{3}$
 $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{for } 1} \le j \le \frac{m}{3}$
 $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r \text{for } \frac{m}{3} + 1} \le j \le \frac{2m}{3}$
 $\sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r \text{for } \frac{2m}{3}} + 1 u$
 $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{for } 1 \le j \le \frac{n+1}{3}$
 $\mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2\left(\frac{n+1}{3}\right)$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2\left(\frac{n+1}{3}\right)$
 $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2\left(\frac{n+1}{3}\right)$

$$\begin{aligned} & \text{Subcase (ii) If } m \equiv 1 \pmod{3} \\ & \sigma(u_j) = (4n + 2m - j) \frac{1}{10^r \text{for } 1} \leq j \leq \frac{m+2}{3} \\ & \sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r \text{for }} \frac{m+2}{3} + 1 \\ & \leq j \leq 2(\frac{m+2}{3}) - 1 \\ & \sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r \text{for }} 2\left(\frac{m+2}{3}\right) \leq j \leq m \\ & \mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \quad \text{for } 1 \leq j \leq \frac{n+1}{3} \\ & \mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \quad \text{for } \frac{n+1}{3} + 1 \leq j \leq 2\left(\frac{n+1}{3}\right) \\ & \mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \quad \text{for } \frac{n+1}{3} + 1 \leq j \leq 2\left(\frac{n+1}{3}\right) \\ & \mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \quad \text{for } \frac{n+1}{3} + 1 \leq j \leq 2\left(\frac{n+1}{3}\right) \end{aligned}$$

Subcase (iii) If
$$m \equiv 2 \pmod{3}$$

 $\sigma(u_j) = (4n + 2m - j) \frac{1}{10^r} \text{for } 1 \le j \le \frac{m+1}{3}$
 $\sigma(u_j) = (4n + 2m - 1 - j) \frac{1}{10^r} \text{for } \frac{m+1}{3} + 1 \le j \le 2(\frac{m+1}{3})$
 $\sigma(u_j) = (4n + 2m - 2 - j) \frac{1}{10^r} 2(\frac{m+1}{3}) + 1 \le j \le m$
 $\mu(v_j v_{j+1}) = 1 + 4(j - 1) \frac{1}{10^r} \text{for } 1 \le j \le \frac{n+1}{3}$
 $\mu(v_j v_{j+1}) = 2 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2(\frac{n+1}{3})$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2(\frac{n+1}{3})$
 $\mu(v_j v_{j+1}) = 3 + 4(j - 1) \frac{1}{10^r} \text{for } \frac{n+1}{3} + 1 \le j \le 2(\frac{n+1}{3})$

Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ are given in table 6.

Table 6: Edges with MMV K_i and number of K_i $(1 \le i \le 3)$ for the graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n for $n \equiv 5 \pmod{3}$.

 $m \equiv 0 \pmod{3}, 1 \pmod{3}$ and $2 \pmod{3}$

Natureo f n	Natureof m	Edges	$ \begin{array}{l} \text{MMV } K_i 's, \\ 1 \leq i \leq 3 \end{array} $	Number of K_i 's, $1 \le i \le 3$
	m ≡ 0\	$\begin{array}{l} g(v_{j},v_{j+1}) \text{ if } 2\left(\frac{n+1}{3}\right) + 1 \leq j \leq n-1 \\ g(v_{1},v_{n}) \\ g(v_{n},v_{j}) \text{ if } 1 \leq j \leq \frac{m}{3} \end{array}$	$(12n + 4m - 3) \frac{1}{10^{r}}$ for i = 1	$\frac{m+n-2}{3}$ for $i = 1$
		$g(v_j v_{j+1}) \text{if } \frac{n+3}{3} + 1 \le j \le 2\left(\frac{n+3}{3}\right)$ $g(v_n u_j) \text{if } \frac{m}{3} + 1 \le j \le \frac{2m}{3}$	$(12n + 4m - 4) \frac{1}{10^{r}}$ for i = 2	$\frac{m+n-2}{3}$ + 1 for i = 2
		$g(v_j, v_{j+1}) \text{ if } 1 \leq j \leq \frac{n+1}{3}$ $g(v_n u_j) \text{ if } \frac{2m}{3} + 1 \leq j \leq m$	$(12n + 4m - 5) \frac{1}{10^r}$ for i = 3	$\frac{m+n-2}{3}$ + 1 for i = 3
n = 2(mod 3)	m ≡ 1 (mod 3)	$\begin{array}{l} g(v_{j},v_{j+1}) \text{ if } 2\left(\frac{n+1}{3}\right) + 1 \leq j \leq n-1 \\ g(v_{1},v_{n}) \\ g(v_{n}u_{j}) \text{ if } 1 \leq j \leq \frac{m+2}{3} \end{array}$	$(12n + 4m - 3) \frac{1}{10^{r}}$ for i = 1	$\frac{m+n}{3}$ for i = 1
		$g(v_j, v_{j+1}) \text{ if } \frac{m+2}{3} + 1 \le j \le 2\left(\frac{m+2}{3}\right)$ $g(v_n u_j) \text{ if } \frac{m+2}{3} + 1 \le j \le 2\left(\frac{m+2}{3}\right) - 1$	$(12n + 4m - 4) \frac{1}{10^r}$ for i = 2	$\frac{m+n}{3}$ for i = 2
		$g(v_j v_{j+1})$ if $1 \le j \le \frac{m+2}{3}$ $g(v_n u_j)$ if $2(\frac{m+2}{3}) \le j \le m$	$(12n + 4m - 5) \frac{1}{10^r}$ for i = 3	$\frac{m+n}{3}$ for i = 3
	n = 2(mod 3)	$g(v_j v_{j+1})$ if $2(\frac{n+1}{3}) + 1 \le j \le n-1$ $g(v_1 v_n)$ $g(v_n u_j)$ if $1 \le j \le \frac{m+1}{3}$	$(12n + 4m - 3) \frac{1}{10^{r}}$ for i = 1	$\frac{m+n-1}{3}$ for i = 1
		$g(v_j v_{j+1}) \text{ if } \frac{n+1}{3} + 1 \le j \le 2\left(\frac{n+1}{3}\right)$ $g(v_n u_j) \text{ if } \frac{m+1}{3} + 1 \le j \le 2\left(\frac{m+1}{3}\right)$	$(12n + 4m - 4) \frac{1}{10^{7}}$ for i = 2	$\frac{m+n-1}{3}$ + 1 for i = 2
	-	$\begin{array}{l}g(v_{j} v_{j+1}) \ \text{if } 1 \le j \le \frac{n+1}{3} \\g(v_{n} u_{j}) \ \text{if } 2\left(\frac{m+1}{3}\right) + 1 \le j \le m\end{array}$	$(12n + 4m - 5) \frac{1}{10^{r}}$ for i = 3	$\frac{m+n-1}{3}$ for i = 3

Hence, the maximum difference between the number of K_i 's is 1 and

 $|K_i - K_j| \leq \frac{2}{10^r}$ for $1 \leq i, j \leq 3$. Hence, the graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n admits fuzzy tri-magic labeling for $n \geq 6$ and $m \geq 3$.

Example 1: The cycle C_6 that admits fuzzy tri-magic labeling as shown in Figure 4.3.

Taking r = 2 $K_1 = 0.81, K_2 = 0.80$ and $K_3 = 0.79$

Figure 1: The cycle C_6 admits fuzzy tri-magic labeling for n = 3

IV. CONCLUSION

This study explained the fuzzy tri-magic labeling of some unicyclic graphs. It has been proved that the graph obtained by attaching star graph $S_{1,m}$ to the end vertex of the cycle C_n admits fuzzy tri-magic labeling for $n \ge 6$ and $m \ge 3$. We have given an example to prove that the cycle C_6 admits fuzzy tri-magic labeling for n = 3. We are also working on the other examples of unicyclic graphs, which will be reported in subsequent works.

REFERENCES

- Gallian JA. A dynamic survey of graph labeling. *Electr. J. Comb.* 2017; 17: # DS6. doi:10.37236/11668. Available from: ds6v25-2022.pdf (accessed 11 December 2022).
- [2] Harary F. Graph theory. New Delhi: Narosa Publishing House Pvt. Ltd. Reprint 2013. Available from: https://users.metu.edu.tr/home305/aldoks/wwwhome/341/ Book 1 (Harary).pdf
- [3] Ameenal Bibi K and Devi M. Fuzzy Bi-Magic labeling on Cycle Graph and Star Graph. *Global J. Pure App. Math.* 2017; 13(6): 1975–1985.
- [4] Sumathi P and Monigeetha C. Fuzzy tri-magic labeling of some star related graphs. *J. Emerg. Technol. Innovative Res*.2019; 6: 661–667, ISSN 2349-5162. Available from: https://www.jetir.org/view?paper=JETIR1901482 (accessed 8 January 2019).
- [5] Sumathi P, Mahalakshmi A andRathi A. Quotient-3 cordial labeling for some unicyclic graphs – PartII. Int. J.Innovative Res. Pure Eng. Math.2017; 1(1): 9–16. doi:10.29027/IJIRPEM.v1.i1.2017.9-16. Available from:

https://acadpubl.eu/jsi/2018-118-10-11/articles/10/24.pdf (accessed 3 January 2023).

[6] Sumathi P and Suresh Kumar J. Fuzzy quotient-3 cordial labeling on some unicyclic graphs with pendant edges. *J. Algebraic Stat.* 2022; 13(2): 3197–3217.