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Abstract- SDN is a paradigm that em- powers network 

administrators with unprecedented levels of control, 

flexibility, and agility in the face of today’s dynamic and data-

intensive digital environ- ments. The flow table is a 

fundamental concept in the OpenFlow protocol, and it plays a 

central role in packet processing and routing decisions within 

an SDN switch. One of the challenges in dealing with Slow 

DDoS attacks is their difficulty to detect. These attacks mimic 

normal traffic patterns, making them less conspic- uous 

compared to high-rate DDoS attacks that trigger rapid 

alarms. Our approach involves the extraction of features that 

effectively represent the flow table’s state, utilizing feature se- 

lection techniques for SFTO attack detection. Leveraging the 

characteristics of flow entries, we have trained an attack 

mitigation model that intelligently sorts these entries and 

dynamically calculates the proportion to be removed. This 

enables us to achieve real-time detection and mitigation of 

SFTO attacks. Proposed method found more accurate than 

existing methods. 
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I. INTRODUCTION 

 

 In the ever-evolving landscape of modern 

networking, the emergence of Software- Defined Networking 

(SDN) [1] has heralded a transformative shift in the way we 

design, manage, and operate computer networks. SDN is a 

paradigm that empowers network administrators with 

unprecedented levels of control, flexibility, and agility in the 

face of today’s dynamic and data-intensive digital 

environments.  

 

A Slow Distributed Denial of Service (Slow DDoS) 

attack can have a significant impact on Software-Defined 

Networking (SDN) environments due to its subtle and 

prolonged nature. Unlike traditional DDoS attacks that flood 

the network with a high volume of traffic in a short burst, 

Slow DDoS attacks are designed to operate discreetly over an 

extended period. One of the primary impacts of Slow DDoS 

attacks on SDN is resource depletion. Attackers target specific 

resources within the network, such as the flow tables in SDN 

switches or the processing capacity of the SDN controller. By 

sending traffic at a lower rate, the attackers aim to gradually 

exhaust these critical resources, leading to a gradual 

degradation of network performance. 

 

Another significant consequence is the gradual 

network congestion caused by Slow DDoS attacks. As the 

attack progresses, legitimate traffic faces in- creased delays 

and packet drops due to resource exhaustion. This congestion 

leads to slower response times for network services and 

applications, ultimately impacting the user experience. In 

some cases, Slow DDoS attacks can even lead to reduced 

network availability.   Network services may become 

intermittently or completely unavailable to legitimate users as 

the attack consumes network resources. 

 

One of the challenges in dealing with Slow DDoS 

attacks is their difficulty to detect. These attacks mimic 

normal traffic patterns, making them less conspic- uous 

compared to high-rate DDoS attacks that trigger rapid alarms. 

The subtle nature of Slow DDoS attacks allows them to evade 

traditional detection meth- ods, requiring more sophisticated 

anomaly detection techniques and monitoring solutions. 

 

Furthermore, Slow DDoS attacks tend to have a 

prolonged duration. At- tackers aim to sustain the attack over 

an extended period, potentially lasting for days or weeks. This 

extended duration complicates mitigation efforts, as defenders 

must employ adaptive and dynamic strategies to counter the 

attack effectively. 

 

The impact of Slow DDoS attacks is not limited to 

network performance; it can also affect the SDN controller. In 

SDN environments, the controller is responsible for network 

management and control decisions. Slow DDoS attacks can 

overload the controller’s processing capacity, causing delays 

in network con- trol decisions and management tasks. This can 

further exacerbate the network’s overall performance and 

responsiveness. 

 

To mitigate the impact of Slow DDoS attacks on 

SDN, organizations need to implement advanced monitoring 

and detection mechanisms capable of identi- fying subtle 
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changes in network behavior.  Adaptive mitigation strategies, 

such as dynamic resource allocation and traffic filtering, are 

essential to maintaining network availability and performance. 

Regular security assessments and staying informed about 

emerging DDoS attack trends are crucial for effective defense 

against Slow DDoS attacks in SDN environments. This paper 

provides a solution to this problem. 

 

II. RELATED WORK 

 

Traditionally, the enhancement of security 

applications and controllers in Software- Defined Networking 

(SDN), along with the real-time validation of network re- 

strictions, has been a central area of research in SDN security. 

Previous studies have particularly emphasized the 

development of Intrusion Detection Systems (IDSs) as crucial 

defense mechanisms for safeguarding network systems [2], 

[3].  

 

Another noteworthy work in the realm of Intrusion 

Detection Systems (IDS) is the enhanced SD-WSN framework 

[5] based on SDN principles. This frame- work addresses 

network management challenges and node failures while 

enabling flexible data forwarding. However, few studies 

effectively protect against com- promised forwarding devices 

in the data plane [6], [7]. Attacks originating from the data 

plane pose significant threats to SDN [8]. By employing 

multiple hosts under OpenFlow switches, attackers can disrupt 

or understand control plane behaviors without detailed 

knowledge of controller applications. These attacks 

encompass DoS, topology poisoning, and side-channel attacks 

[9]. Faulty behaviors originating from SDN switches include 

traffic loss, fabrication, misrouting, modification, delay, and 

reordering [3]. Among existing solutions,  SPHINX  [10]  has  

practical  implementations  [5]. It detects and mitigates 

security attacks from malicious switches by abstracting 

network operations through incremental flow graphs. 

However, SPHINX has limitations: it cannot detect delays 

caused by malicious forward- ing devices [[11] and induces 

significant communication overheads due to gath- ering flow 

statistics from all switches [12]. Another effective system, 

WedgeTail [11], operates as an intrusion prevention system 

for SDN’s data plane. FlowMon [13] proposes two anomaly 

detection algorithms, Packet Droppers and Packet Swappers. 

This system analyzes port statistics and actual forward- ing 

paths to identify malicious switches. However, FlowMon may 

malfunction if dishonest switches provide false statistical 

information. Lastly, an online detec- tion mechanism identifies 

suspicious SDN switches and generates security alerts using 

Security Information and Event Management (SIEM) 

technology [14]. SIEM offers real-time analysis of security 

alerts, covering abnormal switch be- haviors like incorrect 

forwarding, packet manipulation, and weight adjustment. In a 

recent study [15], we introduced a novel approach to identify 

compromised switches utilizing an autoregressive integrated 

moving average (ARIMA) learning model. 

 

III. PROPOSED SYSTEM 

 

The proposed framework is shown below: 

  

 
Fig 1: Proposed framework 

 

Initially, the system continuously monitors the 

number of flow rules in the table and predicts their values in 

real-time. When the predicted number of flow rules for the 

next two seconds approaches a predefined threshold, the 

system captures the content of the flow table, analyzes its 

characteristics, and acti- vates the attack detection module. 

Based on the detection outcomes and the predicted number of 

flow rules from the rule number prediction module, the system 

dynamically calculates an eviction proportion. This proportion 

is then used to remove suspected malicious flow rules, thereby 

freeing up space in the flow table and preventing overflow. 

 

The primary objective of this module is to 

continuously monitor the rule count in the target switch’s flow 

table in real-time and predict the expected change in rule 

count over the next two seconds. This prediction serves as the 

activation threshold for the subsequent attack detection 

module and aids in calculating the proportion of flow entry 

deletions in the attack mitigation module. The rule number 

prediction module promptly responds when the flow entry 

count exceeds the predetermined threshold, enabling timely 

detection and mitigation of SFTO attacks before the flow table 

reaches its capacity. This proactive approach effectively 

reduces and prevents flow table overflows and mitigates their 

negative impact on the network. 

 

To predict the changes in rule numbers, real-time rule 

count samples are collected from the flow table. The Long 

Short-Term Memory Recurrent Con- volutional Network 

(LRCN) algorithm is employed for this prediction. LRCN is a 

deep recurrent convolutional model designed for various high-

level tasks, including computer vision (Donahue et al., 2015). 
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Functioning as an encoder- decoder model, LRCN employs a 

Convolutional Neural Network (CNN) model as the encoder 

to automatically extract features from the sequence of flow en- 

tries. Subsequently, it uses a Long Short-Term Memory 

(LSTM) model as the decoder for prediction. LRCN’s deep 

spatial and temporal architecture makes it versatile, allowing 

its application to both sequential input and output problems, 

thereby significantly enhancing the algorithm’s performance. 

In this architecture, the CNN model is placed as the initial 

layer for pre-training. It reads the time series of flow entries 

within a sliding window as input, utilizing the first 

convolutional layer to process the input data and project the 

results onto the feature map. The second convolutional layer 

further refines the salient features extracted in the first layer. 

Both convolution layers employ 64 feature maps (filters) and 

have a kernel size of 3 for each time step, which reads the 

input flow entries sequence. The maximum pooling layer is 

configured with a pool size of 1 to reduce the feature map’s 

dimensions. The Flatten layer is then applied to convert the 

feature map into a one-dimensional vector, which serves as the 

input for the decoder LSTM. 

 

IV. RESULT 

 

The experimental setup was conducted on a host 

running Ubuntu 16.04.06, equipped with 32 GB of memory 

and an Intel Xeon E5-2680v4 CPU. The net- work topology, 

used for simulation purposes, was created using Mininet, a 

pro- cess virtualization network simulation tool that operates 

on the OpenFlow 1.3 protocol, version 2.3.0d6. The network 

switch employed OpenVSwitch version 2.5.5. For control, the 

experiment utilized the Ryu lightweight SDN controller 

framework, version 4.3.0, and established a Layer 4 Switch 

application for man- aging and matching flow rules. 

 

During the attack scenario, the red host, referred to as 

the ”Attacker,” sends malicious traffic flows to the purple 

host, known as the ”Server.” This action leads to the overflow 

of flow tables in switches S1 and S2. Concurrently, the user 

host ”User1” generates background traffic for the SDN by 

replaying the real data set IMC DATA from the network 

center to the Server. This background traffic is transmitted at a 

rate of 1200 packets per second. To distinguish between 

malicious and normal flow rules, various source IP addresses 

are utilized, and they are labeled differently in the attack 

detection module to aid in the classification process. 

 

 
Fig 2: Experimental topology 

 

The LightGBM algorithm outperformed the other 

classifi- cation algorithms across all four evaluation metrics, 

showcasing its ability to accurately detect SFTO attacks. 

 

 
Fig 3: Performance 

 

IV. CONCLUSION 

 

Through the continuous monitoring of the rule 

number within the flow table and the real-time prediction of 

flow table overflow, we have established a proactive defense 

mechanism against SFTO attacks. Our approach involves the 

extraction of features that effectively represent the flow table’s 

state, utilizing feature se- lection techniques for SFTO attack 

detection. Leveraging the characteristics of flow entries, we 

have trained an attack mitigation model that intelligently sorts 

these entries and dynamically calculates the proportion to be 

removed. This enables us to achieve real-time detection and 

mitigation of SFTO attacks. In this research, we 

comprehensively evaluated the SFTO-Guard system through a 

series of experiments conducted within the Mininet network 

simulator envi- ronment coupled with the Ryu controller. We 

analyzed the outcomes of offline flow entry count prediction, 

attack detection, and malicious rule identification. 

Subsequently,  we deployed SFTO-Guard in real-time to 

assess its effectiveness in mitigating attacks. 
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