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Abstract- Speed control of induction motor drives remains a 

key area of research due to the affordability, simplicity, and 

durability, induction motorswhich find extensive use in a 

variety of industrial settings. Because of their nonlinear 

features and the impact of different uncertainties, precisely 

controlling the speed of these motors is still a tough challenge. 

When faced with unpredictable conditions, traditional control 

approaches frequently fail to deliver the expected 

performance. Machine learning (ML) models have shown 

great promise in this regard, providing adaptability and 

enhanced accuracy, to improve the speed control of induction 

motor drives. This paper presents the basics of speed control 

of induction motor drives along with evolutionary algorithms 

which are used for their speed control. This paper presents a 

systematic review of the fundamentals as well as the salient 

points pertaining to machine learning models employed for 

the speed control mechanism for induction motors and 

induction motor drives. 
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I. INTRODUCTION 

 

 As mechanical loads in the industrial business can 

exhibit continuously variable behavior, necessitating 

continuously variable torque from the motor. As a result, IM 

calls for two modes of operation: one that runs straight from 

the mains and another that uses changeable frequency drives 

[1]. Due to its easy speed control, DC motors were popular in 

the early years of the industrial revolution for applications 

with changing loads. The system becomes much more 

cumbersome due to the need for an extra corrected assembly 

in such a system. A DC motor's carbon brushes also cause 

sparks to fly and necessitate regular servicing. Because of this, 

variable speed IM drives were developed, and they have now 

supplanted DC motor drives entirely [2].Electrical drives 

consist of a power source (the electrical machine) and a 

control system (the means of regulating electrical parameters) 

that work together to transform electrical energy into 

mechanical energy. The two primary functions of an electric 

motor drive are controlling the beginning speed and applying 

the brakes. This whole enterprise is just a temporary one. Both 

open and closed loop control may operate electric drives, 

although close loop control is more commonly used because 

of its many benefits and shortcomings. The fundamental 

control mechanisms namely current limiting, torque limiting 

and closed loop speed control mechanisms are presented next 

[3]-[4] 

 

 
Figure 1: Current Limiting Mechanism 

 

 

Figure 2: Torque Limiting Mechanism 
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Figure 3: Closed Loop Speed Control Mechanism 

The energy that the motor can run on is represented 

by the source block, which can be either AC or DC. The 

power modulator receives this signal and uses it to regulate the 

system. A power modulator (PM) allows the motor to respond 

to changes in speed and torque by adjusting the supply. A 

motor block can be any device that converts electricity into 

mechanical motion. The 3ϕ motor is being used in this project. 

Mechanical torque demanding tasks, such as load blocks, 

require maximum efficiency in the application of motor output 

torque. In order to provide a better speed-torque relationship, 

the sensing unit measures the output speed or motor current 

and feeds that data back to the input supply side [5]. 

 

The major working block whose output signal to PM 

provides the intended outcomes is the control unit, which 

receives its input signal from the sensing unit and compares it 

with its own output signal to determine the right control action 

to signal to the power modulator. The input command block 

stores the predefined action that provides the system with 

information about the controller command. Out of the multiple 

speed control mechanisms, the V/f method happens to be one 

of the most commonly used mechanisms [6]Changing the 

frequency is the key to this method's IM drive speed control. 

The aforementioned formulae for rotor speed allow for easy 

tuning of synchronous speed by changing frequency. The rotor 

speed can be altered in response to changes in the synchronous 

speed. Below, we'll go over why we're using the V/f approach. 

The induced emf can be expressed as V = 4.44kTfϕ. 

V, k, and T are constants in the previous equation. So, ϕ 

reduces as the frequency increases and vice versa. Magnetic 

saturation occurs very rapidly in the machine's core as ϕ rises. 

Another way to express ϕ is as: 

 

                    (1) 

 

Instead than just changing the frequency value to 

control the value of ϕ, the value of V is additionally modified 

so that (V/f) remains constant, which means that the value of ϕ 

remains constant. Now, controlling V/f requires the ability to 

vary V/f. 

 

II. MACHINE LEARNING MODELS FOR SPEED 

CONTROL 

 

Nonlinear systems, such as induction motors, are 

well-suited for control by machine learning models like neural 

networks, support vector machines, and fuzzy logic systems 

because of their ability to learn complicated patterns and 

correlations from data. Because these models don't necessitate 

explicit mathematical representations, control design becomes 

more easier, and the system becomes more adaptable to new 

circumstances [7]. Motor speed regulation performance can be 

enhanced with the use of ML models trained on historical 

data, which can forecast the ideal control action [8]s. 

 

When it comes to controlling the speed of an 

induction motor, one of the most common ML strategies is the 

use of neural networks. They are great at capturing the motor's 

dynamics and can approximate any nonlinear function. 

Various types of neural networks, including feedforward, 

recurrent, and convolutional, have been used for this task. 

These networks can accurately change the motor speed in the 

presence of disturbances and parameter variations by training 

on the input-output data of the motor system [9]-[10]. 

 

Another machine learning method used for speed 

control is support vector machines (SVMs). In order to regress 

or classify data, support vector machines (SVMs) search for 

the best hyperplane that either fits the data points or divides 

the data into several classes. Training support vector machines 

(SVMs) to correlate motor operating circumstances with 

control actions is a common practice in motor speed control. 

Their extensive speed control capabilities in induction motors 

are a result of their capacity to manage high-dimensional areas 

and prevent overfitting. 

 

Induction motor control is a perfect application for 

fuzzy logic systems since they use human-like reasoning to 

deal with uncertainties and imprecise data. In order to 

determine the control actions depending on the motor's present 

state, fuzzy controllers use a set of language rules. In addition 

to being easily interpretable, these systems can be fine-tuned 

to operate as needed. To further improve the motor's speed 

control capabilities, fuzzy logic systems can be integrated with 

machine learning algorithms to dynamically adjust their rules. 

[11] 

 

Combinations of Methods 
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Improving speed control is a promising area for 

hybrid systems that incorporate different machine learning 

techniques. In order to take advantage of both the learning 

power and the interpretability of neural networks and fuzzy 

logic, neuro-fuzzy systems combine the two. A similar effect 

can be seen when SVMs and neural networks are combined to 

improve the control system's accuracy and robustness. 

Because they take advantage of the best features of both 

methods, hybrid models can outperform their solo 

counterparts [12]-[13]. 

 

 
Figure 4: Frequency-Torque Curve 

 

Figure 4 depicts the frequency torque curve for 

induction motors.With its minimal beginning current and 

mechanical stress, the V/f speed control technique requires 

less maintenance. 

 

 
Figure 5: Mechanism of working for ML based controller 

 

In the current physical state, the ML-based controller 

calculates the difference (error) between the expected output 

and the actual output. It then generates an output with the goal 

of reducing the difference (error) as a function of the 

difference [14]This is depicted in figure 6. 

 

 
Figure 6: The Typical V/f controlling mechanism 

 

The evaluation metrics for the method are [15]: 

 

 

(1) 

And 

(2) 

 

The training algorithm for the machine learning model is 

given by: 

 

The training algorithm adopted in this work is given by: 

Step.1: Initialize weights ( ) randomly. 

Step.2: Fix the maximum number of iterations (  and 

compute  

Step.3: Update weights using gradient descent with an aim to 

minimize the objective function J given by: 

 

(3) 

 

Step.4: Compute the Jacobian Matrix given by: 

 

(4) 

Here,  

The error for iteration ‘i’ designated by  is computed as: 

)                                                         (5) 

Here 

is the actual value 

is the predicted value 
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Step.5: Iterate steps (1-4) till the cost function  stabilizes or 

the maximum number of iterations set in step 2 are reached, 

whichever occurs earlier.  

 

It is desirable to attain least amount of steady state error at 

least number of iterations. 

 

III. PREVIOUS WORK 

 

This section presents the summary of previous work in the 

domain: 

 

Savarapu et al. proposed the Modified Brain Emotional 

Controller (MBEC) method. Variations in torque and flux 

ripples make IM highly sensitive in low-speed operation. The 

IM drive's performance is negatively impacted by these 

changes in stator currents, which inertly produce low-order 

harmonics. By incorporating a controller that enhances the 

drive's performance while simultaneously reducing harmonic 

presence, the drive's overall efficiency can be enhanced. To 

get better performance out of the drive, this research suggests 

a biologically inspired intelligent speed controller, MBEC. A 

discrepancy between the reference speed and the motor's 

actual speed, as determined by the Model Reference Adaptive 

System (MRAS), is fed into the MBEC as input. The inverter 

was built using a support vector machine (SVM) based 

topology, and the sensorless DTC technique is used to operate 

the IM. This research presents a stability analysis of an IM 

drive that is based on MBEC in order to demonstrate its 

usefulness. We use Opal-RT OP5600 for real-time 

experiments to verify the proposed control setup under 

varying operating conditions and confirm the findings. We 

compare the suggested control algorithm's performance under 

various operating situations to that of the BEC and PI methods 

to ensure its efficacy in preventing torque ripples and low flux 

ripples. 

 

Stender et al. proposed that one must prioritize developing 

induction motors with high torque estimation accuracy for 

torque-controlled applications, such as electric automobiles. 

The accuracy of the measured magnetic flux has traditionally 

been a key component of torque estimate, but this has proven 

to be a difficult task owing to a number of less-than-ideal 

effects, such as skin effect influences, iron losses, and 

magnetic saturation. The alternative is a hybrid machine 

learning observer that estimates torque and stator flux 

simultaneously; in other words, it combines the two tasks into 

one. The utilization of physically-inspired architectures 

grounded in expert knowledge (hybrid modeling) allows for 

both small model size and excellent estimation accuracy, as 

opposed to arbitrary neural network topologies. The key 

benefit of this approach is that not only are extra flux 

measurements not needed, but the training of the enclosed 

neural networks is also dependent on recorded torque data. 

This method achieves a root-mean-square inaccuracy of just 

1.0% with respect to nominal torque across the whole 

operational range. 

 

Verma et al. presented the challenge of calculating induction 

motor torque and speed from measured voltages and currents. 

When evaluated using conventional measures from a machine 

learning standpoint, neural networks demonstrate respectable 

performance on this problem. But we prove that there are 

certain restrictions on analyzing a neural network model with 

machine learning metrics for induction motor issues. The 

validation of neural network performance from an electrical 

engineering perspective is necessary due to the mission-

critical nature of induction motor operations. In order to 

achieve this goal, we use electrical engineering criteria to 

assess several state-of-the-art and more conventional neural 

network designs on both static and dynamic benchmarks. 

 

Ali et al. proposed a failure diagnostics of induction motors 

that is based on machine learning. Two identical induction 

motors are subjected to a variety of single- and multi-electrical 

and mechanical failures in laboratory testing. In order to create 

the fault diagnosis method, experiments are conducted in 

which the motors' stator currents and vibration signals are 

recorded simultaneously. For feature extraction, two signal 

processing techniques—discrete wavelet transform and 

matching pursuit—are selected. To assess the efficacy and 

appropriateness of various classifiers for induction motor fault 

diagnosis, the study employs three classification algorithms—

ensemble, support vector machine (SVM), and K-nearest 

neighbors (KNN). A total of seventeen classifiers from the 

MATLAB Classification Learner toolbox are utilized in the 

evaluation process. Out of the twelve classifiers tested, only 

five—fine Gaussian SVM, fine KNN, weighted KNN, bagged 

trees, and subspace KNN—achieved near-perfect 

classification accuracy for all motor errors. When testing 

motors for defects, a new curve fitting method is created to 

determine characteristics that are not evaluated for, such as 

stator currents or vibration signals under specific loads. 

Induction motors with one or more electrical or mechanical 

failures can be precisely located using the suggested fault 

diagnosis procedure. 

 

Talla et al. proposed the construction of an adaptive controller 

for speed control of induction motor (IM) drives that use 

erroneous models. To be more precise, we presuppose that the 

drive's state-space model has constantly changing errors in all 

of its equations. An adaptive feedforward control term ensures 

system stability and accounts for nonlinear and uncertain 

aspects in the proposed controller. The other part of the 
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controller is a feedback control term. The suggested method 

ensures quick and accurate speed tracking while also being 

straightforward to implement. By applying the Lyapunov 

theorem and a related lemma, we can verify that the suggested 

speed controller is stable. We evaluate the proposed control 

method in comparison to three different types of controllers: 

adaptive backstepping sliding mode control (ABSMC), 

conventional field oriented control (FOC), and nonadaptive 

feedback linearization control (FLC). Experiments conducted 

on a 4 kW IM drive prototype show that the controller 

outperforms the competition in terms of control performance, 

particularly in situations where there is a large parameter 

mismatch between the actual drive and the model used to 

design it. This includes better robustness, smaller mean 

square, and maximum absolute errors (MAEs). 

 

Conventional methods for controlling the speed of 

induction motors, such as scalar control (V/f control), vector 

control (field-oriented control), and direct torque control, have 

limitations. These methods rely heavily on accurate 

mathematical models of the motor, which can be difficult to 

obtain and maintain due to parameter variations and external 

disturbances [16]. Furthermore, these traditional controllers 

may not adapt well to changes in operating conditions, leading 

to suboptimal performance. This underscores the need for 

more flexible and robust control strategies.All conventional 

control methods, including scalar control, vector control, and 

DTC, are highly sensitive to motor parameter variations. 

Parameters such as rotor resistance, stator resistance, and 

inductances can change due to temperature fluctuations, aging, 

and load conditions. These variations can lead to degraded 

performance and reduced accuracy in speed control. 

Traditional controllers often struggle to adapt to these 

changes, resulting in suboptimal performance and 

inefficiencies [17]. Moreover, Conventional control 

approaches typically rely on fixed control laws and 

parameters, which are designed based on a specific set of 

operating conditions. However, induction motors often operate 

in dynamic environments where load conditions, supply 

voltages, and operating requirements can vary significantly. 

The lack of adaptability in traditional control methods makes 

it difficult to maintain optimal performance across a wide 

range of operating conditions. This limitation can lead to 

increased energy consumption, reduced lifespan of motor 

components, and higher maintenance costs [18].While 

advanced methods like vector control and DTC offer better 

performance than scalar control, they involve complex 

mathematical calculations and require high computational 

power [19]. This complexity can be a significant barrier for 

implementation in cost-sensitive applications or systems with 

limited computational resources. The need for real-time 

processing and fast response times further exacerbates this 

challenge, making it difficult to achieve the desired 

performance without significant investment in hardware and 

software resources [20].Hence machine learning models are 

superior. 

 

IV. CONCLUSION 

 

This paper presents the need and importance of 

machine learning based models for speed control of induction 

motor drives. Due to the dynamics is complex and 

conventional methods have their limits, speed control of 

induction motor drives must rely on optimization algorithms 

and machine learning. Optimization methods provide effective 

parameter adjustment, whereas ML algorithms provide 

adaptability, resilience, and flexibility. When used in tandem, 

these cutting-edge technologies boost motor control systems' 

accuracy, dependability, and efficiency. Improvements in 

performance and widespread industrial use are anticipated 

outcomes of applying these technologies to induction motor 

drives as they progress. A fundamental analysis of control 

mechanism along with salient noteworthy contribution in the 

filed of study has bene presented. 
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