
IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 315                                                                                                                                                                     www.ijsart.com 

 

Early Detection of Network Intrusions, One-Class 

Classifier 

 

Santhoshkumar P  

Jayam college of engineering and technology 

 

Abstract- Early detection of network intrusions is a very 

important factor in network security. However, most studies of 

network intrusion detection systems utilize features for full 

sessions, making it difficult to detect intrusions before a 

session ends. To solve this problem, the proposed method uses 

packet data for features to determine if packets are malicious 

traffic. Such an approach inevitably increases the probability 

of falsely detecting normal packets as an intrusion or an 

intrusion as normal traffic for the initial session. As a 

solution, the proposed method learns the patterns of packets 

that are unhelpful in order to classify network intrusions and 

benign sessions. To this end, a new training dataset for 

Generative Adversarial Network (GAN) is created using 

misclassified data from an original training dataset by the 

LSTM-DNN model trained using the original one. The GAN 

trained with this dataset has ability to determine whether the 

currently received packet can be accurately classified in the 

LSTM-DNN. If the GAN determines that the packet cannot be 

classified correctly, the detection process is canceled and will 

be tried again when the next packet is received. Meticulously 

designed classification algorithm based on LSTM-DNN and 

validation model using GAN enable the proposed algorithm to 

accurately perform network intrusion detection in real time 

without session termination or delay time for collecting a 

certain number of packets. Various experiments confirm that 

the proposed method can detect intrusions very early (before 

the end of the session) while maintaining detection 

performance at a level similar to that of the existing methods. 

 

Keywords- Intrusion Detection, Generative Adversarial 

Network, Early Detection, Real-Time Detection 

 

I. INTRODUCTION 

 

 Network intrusion detection and prevention systems 

utilize machine learning for accuracy that exceeds the limits of 

existing rule-based methods [1-5]. Elaborate and sophisticated 

machine learning algorithms and powerful hardware 

accelerators are among the most important elements of today’s 

intrusion detection system—intrusion prevention system 

(IDS/IPS) [6][7]. As machine learning models evolve, they 

require higher processing power, and accordingly, hardware 

accelerators with higher computational power are being 

released. In this way, it is possible to classify high-capacity 

traffic in each session, and detect network intrusions with high 

accuracy. 

 

When a network intrusion occurs, it is important to 

detect it without delay and block it to prevent further damage. 

Nevertheless, a current machine-learning-based IDS/IPS 

determines whether an intrusion has occurred within each 

session only after the session has terminated, and traffic is 

differentiated with a 5-tuple, i.e. <source IP, destination IP, 

source port, destination port, protocol>, which are key to 

identifying one session. In traffic divided into sessions, the 

statistical values of the traffic transmitted and received from 

the beginning of the session until the end become the features 

of the session. The machine learning model is trained using 

such features, and maliciousness is determined on a per-

session basis. It means a network intrusion is detected after 

session termination, which also means it is detected only after 

the intrusion terminates. Therefore, this approach has 

limitations in safely protecting the network. 

 

There have been studies to overcome the limitations 

of a method using session-based features, and directly using 

the packets to determine features is one representative method. 

However, since this method also needs to collect a fixed 

number of packets for each session to determine whether there 

is an intrusion, it cannot immediately detect one although the 

detection delay is shorter than that of NIDS using session-

based features. 

 

 
FIGURE 1. GPU performance trends in FLOPS per watt 

 



IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 316                                                                                                                                                                     www.ijsart.com 

 

In order to detect an intrusion as soon as it occurs, 

several issues must be addressed technically. First of all, the 

IDS/IPS must be able to inspect every packet received. As 

hardware technology continues to advance, machine learning 

computation speed is increasing at an exponential rate, and 

packet inspection can fully utilize the advantages of parallel 

processing. So, even if network traffic volume is high, it is 

expected that intrusion investigation of every packet will be 

possible, as shown in Figure 1 [8]. 

 

Second, it is essential to know exactly when an 

intrusion occurs within a session but to the best of our 

knowledge, there are few studies on this. If the entire traffic 

for one session is investigated simultaneously after the session 

ends, the characteristics of the intrusion can be identified more 

accurately, but in order to reduce detection delay, it is 

necessary to examine the packets before the session ends. 

However, even for a session with a network intrusion, it is 

difficult to detect the intrusion accurately because its initial 

traffic tends not to be significantly different from normal 

traffic in many cases. Ultimately, to detect an intrusion 

immediately, the problem of how to determine when accurate 

detection is possible must be solved. 

 

To solve such problems, this study proposes a new 

solution combining a Generative Adversarial Network (GAN) 

with a Long Short-term Memory (LSTM) classifier [9][10]. 

The GAN learns the characteristics of a given dataset, and can 

numerically express how likely a data belongs to the class 

with respect to the training dataset. Therefore, a GAN is very 

useful when implementing a one- class classifier. In the 

proposed study, a GAN-based one- class classifier is a 

decision maker determining the right time for intrusion 

detection. The classifier learns all packets belonging to 

misclassified sessions, so it can distinguish between 

undetectable-intrusion and detectable-intrusion packets. 

Detectable-intrusion packets are forwarded while they are 

classified through a multi-class classifier to detect the 

intrusion class. 

 

This study makes the following contributions. 

 

I. Using a GAN, the one-class classifier identifies 

packets that cannot be classified exactly This is the 

first time a one-class classifier has been proposed to 

determine whether intrusion detection is 

impossible/possible by using a GAN, as far as we 

know. A classifier using a GAN can classify with 

high accuracy any packets from which intrusion 

detection is impossible. 

II. The packet-based classifier supports immediate 

network intrusion detectionUnlike an existing packet-

based classifier, classification time is accurately 

determined by the GAN-based one-class classifier, 

and it does not require all (or even a fixed number of) 

packets belonging to the session. Therefore, when an 

intrusion packet reaches the IDS/IPS, it is 

immediately detected as an intrusion. 

 

This paper has the following structure. Section II 

describes the existing research. Section III introduces the 

structure of the proposed method in detail. In Section IV, 

performance comparison results are shown for the proposed 

method and existing methods. Finally, Section V concludes 

this paper. 

 

PREVIOUS WORK 

 

In order to detect network intrusions through machine 

learning, network traffic must be expressed in a specific data 

format (called features that enable the machine learning model 

understand the network traffic). Since the performance of 

machine learning is determined by the features, research on 

how to generate good features from network traffic is ongoing 

[11][12]. Currently, most of the machine-learning studies of 

IDS/IPSs classify traffic into units called a session, and they 

generate features from characteristic of overall session 

behavior like statistical values for each session. For example, 

the total number of packets or the total traffic size transmitted 

until the end of one session belongs to the features. Such 

features created for each session in this way are called 'session 

features'. A session is a logical grouping of traffic, and 5-tuple 

values <source IP, destination IP, source port, destination port, 

protocol> are used to distinguish each session. For protocols 

such as UDP rather than TCP, the session concept is not 

available, but traffic can be distinguished on a per-session 

basis using the 5-tuple values. However, in protocols other 

than TCP, it is difficult to clearly determine the end of a 

session. Therefore, if a packet having a new 5-tuple (different 

from those of the existing sessions) is received, the IDS/IPS 

handles the traffic as a new session, and if a packet belonging 

to the session is not received for a certain period of time (i.e. a 

session times out), the session is treated as terminated. This 

means that in creating a session feature after the session ends, 

it is difficult to create it without delay caused by time-out. 

Also, if an intrusion is attempted only for a specific period 

within a session, the characteristics of the intrusion may be 

diluted by traffic outside of the intrusion period. This 

characteristic becomes more pronounced with longer sessions 

or higher traffic volumes, so exploiting the characteristics of 

this approach can easily bypass a IDS/IPS that uses the session 

feature [13][14]. 

 



IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 317                                                                                                                                                                     www.ijsart.com 

 

Nevertheless, the reason many IDS/IPSs still use the 

session feature is that it always has a constant size, regardless 

of the length of the session, the length of the packets, or the 

amount of traffic. Such a fixed size of session features makes 

designing machine learning models easy. Also, since it has 

low spatial complexity, it is more advantageous for learning 

larger-capacity traffic. However, in order to perform intrusion 

detection, it is necessary to classify the received packets by 

session, and analyse all packets in the session after the session 

is terminated in order to create a session feature. Therefore, it 

requires a lot of memory or a high amount of computational 

power, which is a big obstacle in real-time detection [15]-[21]. 

When session feature created from single session is used, it 

becomes difficult to detect an intrusion that leverages multiple 

simultaneous sessions to increase damage. To solve this 

problem, it is helpful to use features created from multiple 

sessions rather than features created from one session. Good 

examples of such features are the total number of sessions that 

occurred during a specific time period, or the total amount of 

traffic received by a specific server from multiple clients. To 

distinguish this session feature from the existing single-session 

feature, let us call it an inter-session feature. The inter-session 

feature is a method that can compensate for the shortcomings 

of the session feature. However, the inter-session feature 

requires more complex processing and more storage space 

than the existing session feature [22][23]. 

 

Although the session feature is most commonly used, 

research using packet data as a feature is also underway to 

solve the shortcomings of the session feature [24][25]. To 

directly use packet data as features, features are simply created 

by applying one-hot encoding to each byte value of the packet 

data [24]. Therefore, in this case, the total feature size is larger 

than the packet size. To distinguish a feature created in this 

way from a session feature, let us call it a packet feature to 

discriminate it from a session feature. Time- consuming 

calculations, such as statistical calculations for creating 

session features, are unnecessary when generating packet 

features. 

 

When packet feature is used, it is difficult to 

determine a normal session from an intrusive session using the 

first packet alone. Since information stored in one packet is 

quite limited, features built from packets in one session should 

be collected and used for classification; however, such a 

procedure is similar to generating a session feature. Basically, 

a packet feature can be created by collecting data of the same 

size from the first N packets in a session, or it can be created 

by collecting all packet data up to a predetermined size, L. 

Therefore, there is no need to wait until the session ends 

unlike session feature, but the packet feature also needs time 

to collect N packets or L bytes for each session. In the end, 

intrusion detection is delayed if not enough packets are 

collected, even when a specific packet that attempts an 

intrusion is received. 

 

If one-hot encoding is applied to each byte to 

generate packet features, the number of features increases 

significantly, which is a major obstacle for a machine learning 

model trying to learn or classify at a high speed. In order to 

solve this problem, even if accuracy is low, a method of using 

packet data directly as a feature without one-hot encoding is 

also being tried. In this case, it helps to speed up the 

classification, but in order to collect a certain amount of 

packet data, it is still inevitable that intrusion detection will be 

delayed. 

 

Session features and packet features represent 

characteristics about traffic in different ways. Therefore, a 

method of combining the session feature and the packet 

feature to create synergy has also been proposed. In this case, 

it requires a lot of resources to create both features 

simultaneously, so even with high-performance hardware, it 

can be too difficult to handle large-capacity traffic. In some 

studies exploiting two types of features, the overhead from 

simultaneously creating and maintaining both features can be 

avoided by using only the packet feature at the beginning of 

the session and the session feature thereafter separately, 

instead of using the packet feature and the session feature at 

the same time. However, real-time intrusion detection cannot 

be supported, because this method also has to wait until the 

end of the session to create the session feature if it fails to 

classify the session only using the packet feature. 

 

So far, existing studies of IDS/IPSs in which machine 

learning is applied have been reviewed according to the 

characteristics of features. In order to detect a network 

intrusion in real time without delay, the existing session- 

feature-based or packet-feature-based approaches cannot be 

the solution. For real-time network intrusion detection, an 

innovative approach is required to eliminate weaknesses in the 

existing approaches. 

 

III. THE PROPOSED APPROACH 

 

To achieve real-time detection, it is important to use 

packet data directly as a feature in order to eliminate waiting 

for the end of the session and shorten the time required to 

generate feature of the session. At the same time, it is 

necessary to find a packet that can accurately discriminate 

whether an intrusion has occurred, and to detect the network 

intrusion based on it. Existing research does not provide this 

capability. Therefore, in this study, the following new method 

is proposed to solve the problem. 



IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 318                                                                                                                                                                     www.ijsart.com 

 

A. SYSTEM ARCHITECTURE 

 

The proposed method is implemented based on 

LSTM so that intrusions can be detected on a per-session basis 

while directly using packet data as features. The received 

packets are determined to be an intrusion or not through the 

proposed classifier. If there is no intrusion, the classification 

result is temporarily stored and used as a feature together with 

packet data when the next packet belonging to the same 

session is received. When network intrusions are detected 

using only packet data, there is a high probability that 

detection will fail due to fragmented information for the entire 

session. 

 

In this way, the classification performance from a 

single packet can be greatly improved, but the remaining 

unresolved problem is which packet classification in the 

session will be selected as the final result. In general, 

determining whether an intrusion has occurred using a packet 

from the beginning of the session increases the possibility of 

misclassification. On the other hand, if intrusion detection is 

performed using a packet close to the end of the session, 

detection is too late, as mentioned above. Ultimately, it is 

necessary to determine the packet that can make the fastest 

determination most accurately. The proposed method attempts 

to solve this problem by using a GAN. The GAN 

discriminator is trained using only the packets misclassified by 

the LSTM classifier for the training dataset, so the 

characteristics of the packets that are highly likely to be 

misclassified are accurately learned by the GAN generator. 

 
FIGURE 2. Procedures in the proposed algorithm 

 

 
FIGURE 3. The partial structure of the proposed classifier 

for t-th packet 

 

Whenever a packet is received by NIDS/NIPS, the 

LSTM classifier is used to determine whether the session 

including the packet is malicious or not, and the result is 

verified using GAN. If it is determined through the GAN that 

the reliability of the classification result is low, the 

classification result is ignored. If it is determined that the 

reliability is high, the session is processed according to the 

classification result. The overall flow and structure are as seen 

in Figures 2 and 3. Each part of the entire system is described 

in detail below. 

 

 
FIGURE 4. The LSTM-DNN-based classifier using packet 

features 



IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 319                                                                                                                                                                     www.ijsart.com 

 

B. ACTIVE SESSION CACHE 

 

The active session cache is used to determine 

whether a received packet is an existing-session packet or a 

new session packet. Also, packets from the existing session 

are used to find the total number of received packets in the 

session and the classification results for previous packets. 

Here, the classification result is the output of the LSTM cell or 

the final intrusion-detection result. For example, if the result is 

intrusion, the all consecutive packets belonging to the session 

is immediately dropped when it is received. This can greatly 

improve the performance of the classifier by avoiding 

unnecessary packet classification. 

 

C. FEATURE GENERATION 

 

The first L bytes of the IP packet are used to create a 

feature for classification from the packet data. A typical value 

for L in the experiment is 98 bytes. As L is increasing, 

classifier tends to achieve higher detection rate since it can 

leverage more meaningful features but it will suffer from 

larger overhead in terms of memory consumption and 

classification speed. From the preliminary experiment, the 

detection rate was measured according to L as shown in Table 

I. By considering detection rate and classification overhead 

simultaneously, 98 is chosen for the value of L. 

 

TABLE 1. 

F1-SCORE ACCORDING TO L FROM THE 

PRELIMINARY EXPERIMENT RESULT USING 

ISCX2012 TRAINING DATASET. L IS SET TO EACH 

VALUE SATISFYING CONSTRAINT OF IMAGE 

TRANSFORMATION. 

L (byte) 50 98 162 242 392 512 

F1-score (%) 92.30 92.83 91.41 92.17 91.82 92.92 

 

In order to remove dependency on a specific session, 

the source IP, destination IP, source port, and IP identification 

(a total of 12 bytes) are excluded from the packet feature. 

Thus, if the packet size is smaller than L+12 bytes, zeros pad 

the values at the end of the data. In general, packet data create 

features through one-hot encoding, but there are fields (e.g. 

length) where it is advantageous for values in the packet data 

to be processed as numbers. Therefore, one- hot encoding is 

not applied in this proposed method. 

 

D. LSTM-BASED CLASSIFIER 

 

The t(≤N)-th cells of LSTM classify the t-th packets. 

The value for k is obtained from the active session cache, as 

described above. Figure 4 shows the structure of the LSTM 

classifier when N=6 and L=98. The output of each LSTM cell 

has a 512 X 2 dimension as input to the DNN to determine 

whether a network intrusion occurs. In addition, the output of 

the cell is stored in the active session cache and serves as a 

session feature when classifying the next packet. Figure 4 

shows the detailed structure of the packet- feature-based 

classifier. 

 

The (t-1)-th cell of the LSTM needs xt-1, ht-1, and Ct-1 

as an input for the cell, and outputs ht and Ct, which are used 

as input to the next cell. In order to classify the current packet 

xt, only ht and Ct are required instead of the previous packet, 

xt-1. Noting that xt-1 has a variable size, it is possible to classify 

xt by storing the fixed sizes of ht-1 and Ct-1 from the previous 

classification. This approach has two advantages. First, the 

classifier can guarantee that it consumes only a fixed size of 

memory for classification so it can support a high scalability 

in terms of the concurrent session number. 

 

Second, the fixed number of features makes the classifier 

design easy. 

 

 
a. ISCX2012 

 

 
b. CIC2017 

 



IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 320                                                                                                                                                                     www.ijsart.com 

 

 
c. CSE2018 

 

FIGURE 5. The training dataset (in red) and misclassified 

data (in green) in the classifier projected on a two-

dimensional plane by PCA for each dataset. 

 

 

E. THE GAN-BASED ONE-CLASS CLASSIFIER 

 

Since the result of the LSTM-based classifier 

determines whether to allow or discard all packets belonging 

to the session, it is important to verify the reliability of that 

result. In order to identify and classify packets with a high 

probability of being false positives, the proposed method uses 

a GAN. In the GAN for the proposed method with the given 

training data, the generator creates several sets of fake data 

similar to the training data, and the discriminator is trained to 

distinguish real data from the fake data generated. Therefore, 

the discriminator can be used as a one-class classifier that 

distinguishes real data. Using these characteristics, a dataset is 

constructed with data misclassified by a packet-based 

classifier, and the GAN learns by using it; then, the received 

packet is classified with a discriminator. 

 

For example, Figure 5 shows the entire training 

dataset (in red) and misclassified data (in green) in the 

classifier on a two-dimensional plane through principal 

component analysis (PCA) [26] for each dataset, ISCX2012, 

CIC2017, and CSE2018. As shown in each sub-figure, the 

misclassified data are concentrated in a specific area, and in 

other cases, they are spread out regardless of the dataset type. 

In this case, the general GAN is prone to fail during training. 

Therefore, the proposed method uses the Wasserstein GAN 

with a gradient penalty (shortly, WGAN- GP) in which the 

gradient penalty is applied to effectively prevent training 

failure [27]. 

 

 
FIGURE 6. The WGAN-GP generator structure 

 

Figures 6 and 7 show the model structures of the 

generator and the discriminator of the WGAN-GP used in the 

proposed method. All convolution layers in both models use a 

Leaky ReLU with an alpha value of 0.3 as an activation 

function and L2 regulation with parameters of 2.5 X 10
-5

 

applied [28]. The last convolution transpose layer of the 

constructor uses a sigmoid activation function, and the dropout 

of the discriminator is set to 0.3. 

 
FIGURE 7. The WGAN-GP discriminator structure 

 

F. IMAGE FEATURE GENERATION 



IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 321                                                                                                                                                                     www.ijsart.com 

 

The proposed method uses packet data as features of 

the LSTM classifier (as described previously). However, if 

each byte of the packet data is mapped to one feature and 

applied to the GAN, the GAN does not work properly. This 

can be explained from three aspects. First, the dimensional 

size of packet-based features is smaller than images used in 

deep learning in general. Second, in the image, the correlation 

between the pixel group composed of adjacent pixels and the 

class is higher than the correlation between the value of each 

pixel and the class. On the other hand, in the packet-based 

feature, the value of a specific feature (for example, the 

destination port or the total length of the packet) has a very 

high correlation with a specific class. Finally, the effect of 

noise on packet-based features is significantly greater than the 

effect of noise on specific features (i.e. pixel values) of the 

image. For example, even if the protocol field is changed by 1, 

the session is treated as a completely different protocol. In 

order to solve this problem, one-hot encoding can be applied, 

but this not only makes the number of features too large, but 

also burdens it by being able to determine whether the packet 

data features are numerical or categorical. Therefore, in the 

proposed method, an image is generated by converting 

existing packet-based features so they have image 

characteristics by applying a method similar to that of a PAC-

GAN [29]. 

 

 
FIGURE 8. Image expansion from the original 7 X 14-

dimensional data for the WGAN-GP; ‘»’ and ‘&’ are 

bitwise right-shift operator and bitwise AND operator, 

respectively. 

 

The procedure for creating an image is as follows: 98 

bytes of packet data used for learning about each packet are 

first stored in a 7 X 14–byte array. Now, the byte value of 

each array is divided into the upper four bits and the lower 

four bits, and each four-bit value, b, is converted into 16 X 

b+8 (that is, back to an eight-bit value). The transformed 

values are mapped to 2 X 2 pixels in the image. Finally, the 7 

X 14 black-and-white image is expanded to a 28 X 28 X 1 

image and is used as training data for the WGAN-GP. For a 

detailed explanation, see Figure 8. 

 

IV. PERFORMANCE EVALUATION 

 

TABLE II 

IDS ALGORITHMS USED FOR PERFORMANCE 

EVALUATION 

 
 

TABLE III 

THE DATASETS USED IN THE PERFORMANCE 

EVALUATION 

 
 

To compare accurate performance by the classifiers, 

detection accuracy and detection speed should be measured. In 

this study, accuracy was measured for various metrics, 

including precision, recall, and F1-score, and speed was 

measured based on the number of packets needed to finally 

determine if an intrusion was made for each session. 

 

Various datasets also should be used to analyse 

performance independent of the dataset and network intrusion 

type. The selected datasets are listed in Table III. 

 

A. DETECTION SPEED 

 

The detection speed was compared with session-

based classification algorithms, HAST-IDS, and the proposed 

method. The Gradient boosting, the AdaBoost decision tree, 

the TSE-IDS, the DNN, the Tree-CNN, and the 1D-CNN 

under session-based classification methods detect intrusions 

after the session terminates. Thus, we used the average session 

length, regardless of the classification algorithm, as the 

detection speed of the session-based classifiers, and therefore, 

a lower length means a higher speed. 



IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 322                                                                                                                                                                     www.ijsart.com 

 

 
FIGURE 9. Average number of packets required for 

detection by the algorithms with each dataset 

 

Figure 9 shows the result from comparing the 

average detection rate (that is, the average value of packet 

counts upon detection) for the entire test dataset created from 

each full dataset. As shown in the figure, the proposed method 

had the fastest intrusion detection speed compared to the 

existing session-based classification algorithm and HAST- 

IDS. In particular, it was 12 times faster with ISCX2012 

compared with session-based algorithms. In addition, it 

detected intrusions even faster than HAST-IDS. Since HAST-

IDS only sees a fixed number of packets (N), it hasName 

ISCX2012 [35]CIC2017 [36]CSE2018 [37]an almost constant 

detection speed regardless of the type of dataset. On the other 

hand, the proposed method detects anClass size 5 11 

10intrusion using up to N packets, detecting it more 

quickly.Training datasetValidation dataset 

TestingdatasetSession 477K 607K 982K Packet 15.742K 

9,415K 7,685KSession 159K 202K 327K Packet 5,479K 

3,351K 2,750KSession 159K 202K 327K Packet 5,356K 

3,338K 2,750K 

 

Above all, considering that the proposed method has 

similar or higher intrusion detection accuracy than HAST-

IDS, it was confirmed that the method of determining which 

packet is adequate for the intrusion detection using a GAN is 

quite effective in improving detection accuracy and speed 

simultaneously. 

 

In order to accurately evaluate the performance of the 

proposed method, various existing IDS algorithms were 

selected and compared. The selected algorithms are listed in 

Table II. 

 

Now, to compare detection speed in more detail, let 

us compare the average number of packets for each class in 

the dataset. Figure 10 shows the results for five classes from 

the ISCX2012 dataset. The detection speed of the proposed 

 

 

method was the fastest, regardless of the class. In particular, 

although the session lengths for each class were significantly 

different, we can see that the proposed method only required 

approximately the same number of packets, on average, for all 

classes. 

 

 
FIGURE 10. Average number of packets required for 

detection of each class by the algorithms with the 

ISCX2012 dataset 

 

Figure 11 shows the network intrusion detection rates 

for 11 classes from the CIC2017 dataset. This also shows 

characteristics similar to the ISCX2012 dataset. For the 

PortScan class, all three methods showed the same result 

because (for most sessions) PortScan consisted of only two 

packets. On the other hand, for other classes with various 

session lengths, only the proposed method showed almost 

constant detection speed. When the average session length was 

greater than 7, the intrusion could be detected with the almost 

first four packets, regardless of session length. 

 
FIGURE 11. Average number of packets required to 

detect each class by the algorithms with the CIC2017 

dataset 

 
FIGURE 12. Average number of packets required for 

detection by each class according to detection algorithm in 

CSE2018 dataset 

 



IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 323                                                                                                                                                                     www.ijsart.com 

 

Figure 12 shows the results for the CSE2018 dataset. 

Most sessions belonging to DoS-SlowHTTPTest and 

BruteForce- FTP consisted of two packets, so even using the 

proposed method, the detection speed cannot be improved. 

However, for other classes, such as DDoS-LOIC-HTTP and 

BruteForce-SSH, even if the average session length exceeded 

16, intrusion could be determined with only the first three 

packets. In addition, it was confirmed that performance by the 

proposed method was higher than HAST-IDS or the existing 

session-based method for any class in all the datasets. 

 

 

FIGURE 13. Average number of packets required for 

detection based on average session length with the 

ISCX2012 dataset 

 

 
FIGURE 14. Average number of packets required for 

detection based on average session length with the 

CIC2017 dataset 

 

 
FIGURE 15. Average number of packets required for 

detection based on average session length with the 

CSE2018 dataset 

 

The results from measuring the detection speed of the 

proposed method and HAST-IDS based on session length are 

shown in Figures 13 to 15. When the session length was less 

than N, the number of packets required for detection increased 

according to the session length, but when the session length 

was greater than N, HAST-IDS always used N packets. 

Interestingly, the proposed method showed that when the 

session length was greater than N, a constant number of 

packets less than N was always required, regardless of the 

session length. This proves that the proposed method has high 

scalability for session lengths. 

 

B. DETECTION RATE 

 

To measure the detection accuracy of each algorithm, 

we compared performance for accuracy, precision, recall, and 

F1-score metrics. Figures 16 to 18 show the performance with 

the three datasets. For each dataset, the proposed algorithm 

shows very high F1-scores regardless of the dataset type but 

session-based algorithms and HAST-IDS show fluctuating 

results according to the dataset type. For example, Adaboost 

decision tree, one of the best session- based classifiers 

showing the highest F1-score, achieves 0.74% lower but 

0.13% higher F1-scores with ISCX2012 and CIC2017 

compared to the proposed algorithm. HAST- IDS shows 

0.37% higher but 8.9% lower F1-scores with ISCX2012 and 

CSE2018, respectively. 

 

 
FIGURE 16. Detection performance by the algorithms 

with the ISCX2012 dataset 

 

 
FIGURE 17. Detection performance by the algorithms 

with the CIC2017 dataset 



IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 324                                                                                                                                                                     www.ijsart.com 

 

To compare overall performance, let us show average 

detection rate for each dataset in Figure 19. As confirmed by 

this figure, the proposed algorithm showed the highest 

accuracy, precision, and F1-score. Only exception is recall 

and it achieved the second highest value after Adaboost 

decision tree. From Figures 16 to 19, it proves that the 

proposed algorithm has an ability to guarantee that high 

classification accuracy regardless of dataset type. It is a strong 

and crucial merit that NIDS algorithm should support. As 

mentioned above, compared to the session- based method or 

HAST-IDS, the proposed method can detect a network 

intrusion as soon as possible, and the intrusion detection rate 

showed higher results compared to the other two methods, 

which is a big advantage. This means it can reliably provide a 

high detection rate and fast detection speeds in various 

environments. 

 

 
FIGURE 18. Detection performance by the algorithms 

with the CSE2018 dataset 

 

 
FIGURE 19. Average detection performance by the 

algorithms 

 

Figure 20 shows the ROC for each class with each 

dataset. This also confirmed a high detection rate for almost 

all classes without significant deviations. 

 

V. CONCLUSION 

 

Unlike the existing methods, the proposed NIDS has 

the advantage of being able to stop malicious users before they 

cause damage to the network, because it can determine 

whether an intrusion is occurring before the session 

terminates. In addition, using the packet feature to reduce 

unnecessary time and memory to statistically analyze and 

calculate packet data to generate the session feature is a great 

advantage. This is important considering that network 

intrusions are becoming more diverse while, at the same time, 

the number and quantity of sessions are increasing 

significantly. Basically, machine learning models require a lot 

of memory and computational power, so powerful and 

expensive hardware is absolutely necessary. Therefore, it is 

important in practical terms for the requirements in hardware 

to be lower than with the existing methods. An ML-based IDS 

should ultimately evolve into a real-time IPS that can detect 

and defend network intrusions without delay. Since the 

hardware requirements of an IPS are much higher than those 

of an IDS, the proposed method suggests a useful direction for 

real-time IPS development in terms of a lightweight design. 

 

 
a. ISCX2012 

 

 
b. CIC2017 

 



IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 325                                                                                                                                                                     www.ijsart.com 

 

 
c. CSE2018 

FIGURE 20. ROC for each class in each dataset 

 

Although the detection speed of the proposed 

approach is fast, accuracy needs to be further improved, 

compared to the conventional approaches. Since the proposed 

structure does not depend on a specific classifier, any higher 

accuracy ML model can be used, and it can improve detection 

performance easily without sacrificing the advantages of the 

proposed method. Through this, it is expected that more secure 

and faster network services can be provided to users. 

 

REFERENCES 

 

[1] C. Seelammal, K.V. Devi (2016) Computational 

intelligence in intrusion detection system for snort log 

using hadoop, in: 2016 International Conference on 

Control, Instrumentation, Communication and 

Computational Technologies, ICCICCT, 2016, pp. 642–

647, http://dx.doi.org/10.1109/ICCICCT.2016.7988029. 

[2] L. Bilge, T. Dumitras, (2012) Before we knew it: an 

empirical study of zero-day attacks in the real world, in: 

T. Yu, G. Danezis, V.D. Gligor (Eds.), The ACM 

Conference on Computer and Communications Security, 

CCS’12, Raleigh, NC, USA, October 16- 18, 2012, ACM, 

2012, pp. 833–844, http: //dx.doi.org/10.1145/ 

2382196.2382284. 

[3] M. Al-Qatf, Y. Lasheng, M. Al-Habib, K. Al-Sabahi 

(2018) Deep learning approach combining sparse 

autoencoder with SVM for network intrusion detection, 

IEEE Access 6, pp. 52843–52856, 

http://dx.doi.org/10.1109/ACCESS.2018. 2869577. 

[4] I. Ahmad, M. Basheri, M.J. Iqbal, A. Rahim (2018) 

Performance comparison of support vector machine, 

random forest, and extreme learning machine for intrusion 

detection, IEEE Access 6, pp. 33789– 33795, 

http://dx.doi.org/ 10.1109/ACCESS.2018.2841987. 

[5] M. Belouch, S.E. hadaj (2017) Comparison of ensemble 

learning methods applied to network intrusion detection, 

Proceedings of the Second International Conference on 

Internet of Things, Data and Cloud Computing, in: ICC, 

vol. 17, Association for Computing Machinery, New 

York, NY, USA, pp. 1–4, http://dx.doi.org/10.1145/ 

3018896.3065830. 

[6] Xilinx (2020) Accolade Technology, IPS/IDS offload, 

https://www.xilinx.com/products/acceleration-solutions/1-

1bkvll1. html. Accessed 20 July 2022. 

[7] NVIDIA (2022) NVIDIA Bluefield Data Processing 

Units, https://www.nvidia.com/en-

us/networking/products/data-processing- unit, Accessed 

20 July 2022. 

[8] Yifan Sun (2019) Summarizing CPU and GPU Design 

Trends with Product Data, 

https://deepai.org/publication/summarizing-cpu-and- gpu-

design-trends-with-product-data, Accessed 20 July 2022. 

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing 

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, 

Yoshua Bengio (2014) Generative Adversarial Nets. 

Proceedings of the International Conference on Neural 

Information Processing Systems (NIPS 2014). pp. 2672–

2680. 

[10] Sepp Hochreiter, Jürgen Schmidhuber (1997) Long short-

term memory. Neural Computation. 9 (8): pp. 1735–1780. 

doi:10.1162/neco.1997.9.8.1735. PMID 9377276. S2CID 

1915014. 

[11] N. Almusallam, Z. Tari, J. Chan, A. Fahad, A. 

Alabdulatif, M. Al- Naeem (2021) Towards an 

Unsupervised Feature Selection Method for Effective 

Dynamic Features, IEEE Access, vol. 9, pp. 77149- 

77163, 2021, doi: 10.1109/ACCESS.2021.3082755. 

[12] A. Nugroho, A. Z. Fanani, G. F. Shidik (2021) Evaluation 

of Feature Selection Using Wrapper For Numeric Dataset 

With Random Forest Algorithm, 2021 International 

Seminar on Application for Technology of Information 

and Communication (iSemantic), pp. 179-183, doi: 

10.1109/iSemantic52711.2021.9573249. 

[13] X. Peng, W. Huang and Z. Shi (2019) Adversarial Attack 

Against DoS Intrusion Detection: An Improved 

Boundary-Based Method, 2019 IEEE 31st International 

Conference on Tools with Artificial Intelligence (ICTAI), 

pp. 1288–1295, doi:10.1109/ICTAI.2019.00179. 

[14] Z. Wang (2018), Deep Learning-Based Intrusion 

Detection with Adversaries, IEEE Access, vol. 6, pp. 

38367–38384, doi:10.1109/ACCESS.2018.2854599. 

[15] M.A. Ferrag, L. Maglaras, S. Moschoyiannis, H. Janicke 

(2020) Deep learning for cyber security intrusion 

detection: Approaches, datasets, and comparative study, J. 

Inf. Secur. Appl. 50, 102419, 

http://dx.doi.org/10.1016/j.jisa.2019.102419. 

[16] R.V. Mendonça, A.A.M. Teodoro, R.L. Rosa, M. Saadi, 

D.C. Melgarejo, P.H.J. Nardelli, D.Z. Rodríguez (2021) 

http://dx.doi.org/10.1109/ICCICCT.2016.7988029
http://dx.doi.org/10.1109/ACCESS.2018
http://dx.doi.org/
http://dx.doi.org/10.1145/
http://www.xilinx.com/products/acceleration-solutions/1-1bkvll1
http://www.xilinx.com/products/acceleration-solutions/1-1bkvll1
http://www.xilinx.com/products/acceleration-solutions/1-1bkvll1
http://www.nvidia.com/en-us/networking/products/data-processing-
http://www.nvidia.com/en-us/networking/products/data-processing-
http://www.nvidia.com/en-us/networking/products/data-processing-
http://www.nvidia.com/en-us/networking/products/data-processing-
http://www.nvidia.com/en-us/networking/products/data-processing-
http://dx.doi.org/10.1016/j.jisa.2019.102419


IJSART - Volume 10 Issue 6 – JUNE 2024                                                                                       ISSN  [ONLINE]: 2395-1052 
 

Page | 326                                                                                                                                                                     www.ijsart.com 

 

Intrusion detection system based on fast hierarchical deep 

convolutional neural network, IEEE Access 9, pp. 61024–

61034, http://dx.doi.org/10.1109/ACCESS.2021.3074664. 

[17] C. Liu, Z. Gu, J. Wang (2021) A hybrid intrusion 

detection system based on scalable K-Means+ random 

forest and deep learning, IEEE Access 9, pp. 75729–

75740, http://dx.doi.org/10.1109/ACCESS.2021.3082147. 

[18] P.-F. Marteau (2021) Random partitioning forest for 

point-wise and collective anomaly detection—Application 

to network intrusion detection, IEEE Trans. Inf. Forensics 

Secur. 16, pp. 2157–2172, 

http://dx.doi.org/10.1109/TIFS.2021.3050605. 

[19] J. Kevric, S. Jukic, A. Subasi (2017) An effective 

combining classifier approach using tree algorithms for 

network intrusion detection, Neural Comput. Appl. 28, 

http://dx.doi.org/10.1007/s00521-016-2418-1. 

[20] H. Jia, J. Liu, M. Zhang, X. He, W. Sun (2021) Network 

intrusion detection based on IE-DBN model, Comput. 

Commun. 178, pp. 131– 140, 

http://dx.doi.org/10.1016/j.comcom.2021.07.016. 

[21] K. Narayana Rao, K. Venkata Rao, P.R. P.V.G.D (2021) 

A hybrid intrusion detection system based on sparse 

autoencoder and deep neural network, Comput. Commun. 

180, pp. 77–88, 

http://dx.doi.org/10.1016/j.comcom.2021.08.026. 

[22] N. Kunhare, R. Tiwari (2018) Study of the attributes 

using four class labels on KDD99 and NSL-KDD datasets 

with machine learning techniques, 2018 8th International 

Conference on Communication Systems and Network 

Technologies, CSNT, 2018, pp. 127–131, 

http://dx.doi.org/10.1109/CSNT.2018.8820244. 

[23] J. Song, H. Takakura, Y. Okabe, M. Eto, D. Inoue, K. 

Nakao (2011) Statistical analysis of honeypot data and 

building of kyoto 2006+ dataset for NIDS evaluation, in: 

Proceedings of the First Workshop on Building Analysis 

Datasets and Gathering Experience Returns for Security, 

in: BADGERS, vol.11, Association for Computing 

Machinery, New York, NY, USA, pp. 29–36, 

http://dx.doi.org/10.1145/1978672.1978676. 

[24] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, 

M. Zhu (2018) HAST-IDS:learning hierarchical spatial-

temporal features using deep neural networks to improve 

intrusion detection, IEEE Access 6, pp. 1792–1806, 

http://dx.doi.org/10.1109/ACCESS.2017. 2780250. 

[25] [V.S.M. Srinivasavarma, S.R. Pydi, S.N. Mahammad 

(2022) Hardware-based multi-match packet classification 

in NIDS: an overview and novel extensions for improving 

the energy efficiency of TCAM-based classifiers. J 

Supercomput 78, pp. 13086–13121. 

https://doi.org/10.1007/s11227-022-04377-8 

[26] Pearson, K. (1901) On Lines and Planes of Closest Fit to 

Systems of Points in Space, Philosophical Magazine. 2 

(11): 559–572. doi:10.1080/14786440109462720. 

[27] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, 

Vincent Dumoulin, Aaron Courville (2017) Improved 

training of wasserstein GANs. In Proceedings of the 31st 

International Conference on Neural Information 

Processing Systems (NIPS'17). Curran Associates Inc., 

Red Hook, NY, USA, pp. 5769–5779. 

[28] Andrew L. Maas, Awni Y. Hannun, Andrew Y. Ng 

(2014) Rectifier Nonlinearities Improve Neural Network 

Acoustic Models 

[29] Adriel Cheng (2019) PAC-GAN: Packet Generation of 

Network Traffic using Generative Adversarial Networks, 

pp. 0728-0734, 

https:/doi.org/10.1109/IEMCON.2019.8936224. 

[30] Jerome H. Friedman (2001) Greedy Function 

Approximation: A Gradient Boosting Machine, The 

Annals of Statistics, vol. 29, no. 5, 2001, pp. 1189–232. 

JSTOR. 

[31] Trevor Hastie, Saharon Rosset, Ji Zhu, Hui Zou (2009) 

Multi-class AdaBoost, Statistics and Its Interface. 2 (3): 

pp. 349–360. https://doi.org/10.4310/sii.2009.v2.n3.a8. 

[32] Yoshua Bengio (2009) Learning Deep Architectures for 

AI, Foundations and Trends in Machine Learning. 2 (1): 

pp. 1–127. https://doi.org/10.1561/2200000006 

 

http://dx.doi.org/10.1109/ACCESS.2021.3074664
http://dx.doi.org/10.1109/ACCESS.2021.3082147
http://dx.doi.org/10.1109/TIFS.2021.3050605
http://dx.doi.org/10.1007/s00521-016-2418-1
http://dx.doi.org/10.1016/j.comcom.2021.07.016
http://dx.doi.org/10.1016/j.comcom.2021.08.026
http://dx.doi.org/10.1109/CSNT.2018.8820244
http://dx.doi.org/10.1145/1978672.1978676
http://dx.doi.org/10.1109/ACCESS.2017
https://doi.org/10.1561/2200000006

