
IJSART - Volume 10 Issue 11 – NOVEMBER 2024 ISSN [ONLINE]: 2395-1052

Page | 155 www.ijsart.com

An In-Depth Comparative Study of Distributed

Data Processing Frameworks: Apache Spark,

Apache Flink, And Hadoop Mapreduce

Ms.S. Abikayil Aarthi 1, Ms.M.Dhaslima Shafreen 2, Ms.P.Narmatha3, Ms.B.JayaPriya4

1, 2, 3, 4 Dept of CSE
1, 2, 3, 4 Kings College of Engineering, Punalkulam, Pudhukottai.

Abstract- Data processing has become a crucial task as the

volume and data complexity continue to grow. Distributed

data processing frameworks are the solution to this issue. The

paper-present comparative study of popular frameworks like

Apache Spark, Apache Flint, and Hadoop Map Reduce. This is

done by expressing and comparing the performance,

scalability, fault tolerance, and architecture of each

framework to help businesses make informed decisions about

their choice of framework. The paper begins with a literature

review and methodology, followed by a comprehensive

comparative analysis. Apache Spark benefits from in-memory

processing providing high performance and Apache Flintlocks

on low-latency stream processing. Hadoop Map Reduce offers

fault tolerance and scalability for batch-processing tasks. The

analysis concludes that both Spark and Flink outperform Map

Reduce in terms of performance and scalability. Overall, this

study highlights the strengths and limitations of each

framework and recommends Spark as the current best option

due to its maturity, market share, and community support.

However, we acknowledge Flink’s innovative concepts and

future development possibilities. The choice of the framework

should be based on specific use cases and requirements for

performance, fault tolerance, and real-time processing.

I. INTRODUCTION

 Processing of large amounts of data has become a

valuable aspect of industry and research, necessitating the use

of efficient and scalable frameworks to handle these tasks. As

the volume and complexity of information continue to grow,

efficient and scalable frameworks are required to handle the

processing tasks. The frameworks are intended to ease

computing. It involves transforming raw data into meaningful

information. And also, consists of operations like data

cleaning, visualization, analysis, and aggregation. Traditional

computational power of one machine [13].

However, the distributed nature of the frameworks

allows horizontal scaling by introducing more machines to

process the data overcoming the aforementioned limitation

[13]that careful planning of resource allocation algorithms can

result in major performance and cost benefits. Fast data

processing capabilities of frameworks like Spark are helpful

from an operational standpoint and can potentially save

individuals in the healthcare industry [6]. Research on

predictive analytics highlights the continuing value of

MapReduce [12], especially for non-time-sensitive

applications that need precise predictions from big datasets.

Effectiveness of Spark framework in managing complicated

data operations is demonstrated by the performance evaluation

of query processing jobs [2], which directly affects company

insight and decisions.

While prior studies have explored various distributed

data processing structures, this article offers a novel

contribution by conducting an in-depth comparative study of

three widely used frameworks: Apache Spark, Apache Flink,

and Hadoop Map Reduce. Through a rigorous analysis of the

architecture, performance, scalability, and fault tolerance of

each framework. The author’s aim to provide valuable insights

that can guide businesses in making informed decisions about

their choice of data processing platform. By synthesizing

existing literature and conducting comprehensive comparative

analyses, the research offers a unique perspective on the

strengths and limitations of each framework, thereby

contributing to the advancement of knowledge in the field of

distributed data processing. The scientific contribution of the

study is that it assesses these frameworks, highlights the pros

and cons of each of them, and makes the necessary

recommendations for businesses working with the large

number of processing technologies.

The paper starts with a description of the

methodology used in the research, particularly literature

review and comparative analysis. It then follows with a

comparison analysis where Spark, Flink, and Hadoop

MapReduce are compared through four criteria mentioned

above. The paper finishes with a discussion where the results

of the comparative analysis are discussed.

IJSART - Volume 10 Issue 11 – NOVEMBER 2024 ISSN [ONLINE]: 2395-1052

Page | 156 www.ijsart.com

Methods and Materials.

The methodology used in this research is a

comprehensive literature review and comparative analysis of

the three technologies that will be disscussed. The initial step

in this study involves a literature review of scholarly articles,

research papers, and technical reports that are specifically

focusing on Apache Spark, Apache Flink, and Hadoop

MapReduce. The literature review’s goal is to establish a solid

theoretical foundation and gather a deep understanding of the

topic such as architectural design, features, strengths,

limitations, and their applications in different scenarios. The

comparative analysis is conducted in order to evaluate,

compare three frameworks across multiple aspects that include

architecture, scalability, performance, and fault tolerance.

Based on the literature review findings, technical

documentation, white papers, and case studies provided by the

framework developers and user communities comparative

analysis is carried out.

The details of each aspect are explained below.

Performance: Performance is a key point for any software

because it affects the costs of running the program. The

performance of each framework is evaluated the factors like

execution speed, throughput, latency, and resource utilization.

Benchmarks, experiments, and various empirical studies

conducted by researchers and industry experts are considered

to derive meaningful insights.

Scalability: The motivation for using distributed data

processing frameworks is to be able to scale them, so it is

important to see how this is implemented in each framework.

The scalability criteria in our research were assessed by

studying the frameworks’ ability to handle large volumes of

data and support an increasing number of nodes in a

distributed cluster. We analyzed the frameworks’ scalability

features, limitations, and real-world use cases to evaluate their

capacity to scale effectively.

Fault Tolerance: One of the main criteria for modern systems

is resilience, so it is important to see the differences and

similarities between the frameworks. The fault tolerance

capabilities of the frameworks are assessed by analyzing their

mechanisms for handling failures, fault recovery strategies,

and data reliability guarantees. The literature review provides

insights into the fault tolerance mechanisms employed by each

framework.

Architecture:

The motivation behind the analysis of architectural details is

understanding the differences of implementation that could

affect the workflow of the framework. The architectural

decisions implemented in the frameworks might give

advantages or disadvantages to specific use cases which will

be determined further.

Literature Review.

Apache Spark: Prior research has extensively

explored the capabilities and performance of distributed data

processing structures. Apache Spark offers batch and stream

processing, machine learning, and graph processing. The

studies have demonstrated Spark’s ability to process large-

scale datasets efficiently and its support for real-time data

analysis [13]. The first figure below (Figure 1) represents

Apache Spark’s master/worker architecture. It means that a

driver programinteracts with a single cluster manager

coordinator that manages several workers in which executors

run. The executor can run on the same machine also called a

horizontal cluster or on separate servers which is an example

of vertical clustering

[18].

Fig. 1. Apache Spark Architecture.

Apache Flink:

 On the other hand, Apache Flink emphasizes

streaming data processing and provides robust fault tolerance

and low-latency processing capabilities. Several comparative

studies have evaluated Flink's performance and highlighted its

advantages in handling continuous data streams and its

support for event time processing [4]. Authors of official

documentation [17] provides the chart of Apache Flink

architecture (Figure 2), where Job Manager, Resource

Manager, Dispatcher, and

Task Managers builds Apache Flink's architecture.

And at the same time, task scheduling, failure recovery, and

checkpoint synchronization are all handled by the Job

Manager. The Resource Manager controls resource supply and

allocation in the Flink cluster, when a job is submitted, the

dispatcher offers a REST interface and launches a Job Master.

Every Job Master oversees the execution of a particular Job

Graph, which stands in for a Flink task [17]. The quantity of

task slots defines the amount of concurrency, while task

IJSART - Volume 10 Issue 11 – NOVEMBER 2024 ISSN [ONLINE]: 2395-1052

Page | 157 www.ijsart.com

managers handle task execution, data stream buffering, and

exchange. Provided design makes possible for Apache Flink to

perform distributed operations, manage resources, and process

data effectively.

Fig. 2. Apache Flink Architecture.

Hadoop MapReduce:

Hadoop MapReduce is a framework that works with

distributed data processing and has been extensively studied. It

offers fault tolerance, scalability, and simplicity for batch

processing tasks. Different studies have explored its strengths

in processing large-scale batch workloads and its integration

with the Hadoop ecosystem [1 1]. The Hadoop MapReduce

architecture (Figure 3) includes a lot of necessary elements.

For example, the Job Parts responsible for task scheduling,

monitoring, and job execution. Also, Job Parts assigns tasks to

the Task Trackers, who then perform, reduce, and report on

these activities. While reducing activities carry out

aggregation and create the final result, map tasks analyze

inserted data, and gives intermediate key-value pairs by

replicating data across numerous nodes, the Hadoop

Distributed File System (HDFS) provides fault tolerance. Data

from retrieved from HDFS use input format, which divides it

into splits for mapping activities [5]. The final result of

reduction operations is written back to HDFS using output. In

Hadoop MapReduce, this design offers parallel processing,

fault tolerance, and effective data storage. HDFS divides files

into smaller chunks that are dispersed among nodes, which are

divided into name and data nodes and hold responsibility for

file operations. Mappers and Reducers used in Map-reduce

and Hadoop computing framework, to process data. Key-value

pairs produced by mappers are sorted, and to minimize input

and output they also may be pre-processed by a "combiner."

The large-scale data processing then efficiently managed by

reducers which combine and process these pairs before

returning the results to HDFS.

Fig. 3. Hadoop MapReduce Architecture

The aim and objectives of the study: The primary aim

of the research is to compare these three distributed data

processing frameworks: Apache Spark, Apache Flink, and

Hadoop MapReduce. The research contrasts them on such

parameters as architecture, performance, scalability, and fault

tolerance. The goal is to help organizations make informed

decisions about the best data processing platform for their

specific requirements.

Objectives:

1. To evaluate performance of each framework with factors

like execution speed, throughput, latency, and resource

utilization.

2. To assess scalability of each framework, specifically their

ability to handle large volumes of data on increased

number of nodes in a distributed cluster.

3. To examine fault tolerance capabilities of each framework

by analyzing their mechanisms for handling failures.

4. To analyze architectural differences of each framework to

determine how they influence their performance, and

suitability for various use cases.

Results and Discussion:

Performance:

Spark is known for its in-memory processing capabilities,

which enable it to perform significantly faster than

MapReduce for iterative and interactive workloads. By

keeping data in memory, Spark minimizes disk I/O

(Input/Output) and allows for efficient data sharing across

multiple computations [8]. It also provides various high-level

APIs, such as Resilient Distributed Datasets (RDDs) and

DataFrames, which optimize query execution and improve

overall performance [18].R offers effective distributed

processing by enabling distributed information to be handled

in parallel across a cluster, RDDs are intended to improve

performance [20].RDDs’ capacity to optimize data processing

contributes to their performance advantages. RDDs take

advantage ofin-memory computing to provide faster access to

IJSART - Volume 10 Issue 11 – NOVEMBER 2024 ISSN [ONLINE]: 2395-1052

Page | 158 www.ijsart.com

data than disk-based activities. They provide data locality,

which lowers network costs by allowing data to be processed

on the same node where it is stored [20]. The paper [9] focuses

on a critical component of big data processing with Apache

Spark:maximizing data distribution and dependability using

block size and replication factor setups. The authors

investigate the influence of various factors on application

performance, revealing how fine-tuning might result in more

efficient data processing [9]

Recent studies also show ongoing improvements in

Apache Spark's in-memory processing capabilities. Author

[15] explains Spark ecosystem, highlighting its superior

computing power over Hadoop. At the same time, created

PokéMem, an addition for Spark that mitigates out-of-memory

exceptions and reduces garbage collection overheads by

managing untracked memory consumers in Spark's

environment. PokéMem's approach to optimizing memory

usage boosted Spark's efficiency and execution speed, and it

also shows the framework's ongoing development to meet

modern data processing demands [15].

Flink’s main focus is low latency stream processing.

Its streaming engine can handle large volumes of data which is

used in fast and responsive analytics applications [17].

According to the research, Flink and Spark are the two most

energy-efficient technologies, while Hadoop is the least. This

is particularly relevant for applications where energy

consumption is a critical consideration. Furthermore,

MapReduce usually shows higher latency because of its disk-

based operations and lack of in-memory computing [5].

Summing up, Apache Spark and Flink outperform Hadoop

MapReduce in terms of performance. Some studies have

shown that Apache Spark is able to run almost 100 times

faster than Hadoop MapReduce [8].

Scalability: Spark’s scalability is primarily attributed to its

resilient distributed datasets and directed acyclic graph (DAG)

execution model. The Apache Spark execution framework

relies significantly on DAGs, which enable effective and

reduced data processing workflows. DAGs are a logical

execution plan that shows the steps taken to work with

distributed data [7]. RDDs allow Spark to efficiently distribute

data across a cluster, enabling parallel processing [20].

Additionally, Spark’s DAG execution model optimizes task

scheduling and minimizes data shuffling, resulting in

improved scalability [14]. Flink’s scalability stems from its

fine-grained dataflow model, which enables efficient parallel

processing of data streams [10]. Flink’s distributed runtime

architecture, coupled with its support for pipelined processing

and stateful computations, makes it highly scalable [4]. Flink’s

ability to handle high throughput streaming data allows it

effectively to scale out to larger clusters.MapReduce’s

scalability is limited by its batch-oriented, two-stage

processing model,which involves map and reduce tasks [19].

While MapReduce effectively scales up to handle large

datasets, it faces challenges with smaller, more frequent tasks

due to the overhead of launching and managing individual

map and reduce jobs [5]. Additionally,Map-reduce relies

heavily on disk I/O, which can become a bottleneck when

processing large volumes of data. In conclusion, Spark and

Flink demonstrate superior scalability compared to

MapReduce.

Fault Tolerance: Spark employs a fault tolerant mechanism

called Resilient Distributed Datasets (RDDs) to enable fault

tolerance [18]. RDDs store data inpartitions across the cluster,

allowing for the recomputationof lost partitions in case of

failures. Spark also supports lineage, a directed acyclic graph

of transformations applied to RDDs, which facilitates the

recovery of lost data by re-executing transformations on

available partitions [14]. Flink, on the other hand, employs a

different approach called exactly once processing semantics

[17]. It uses a distributed snapshotting technique to capture the

state of the processing pipeline at regular intervals. In the

event of failure, Flink can roll back to the latest consistent

snapshot and resume processing from there, ensuring exactly

once semantics [10]. MapReduce offers fault tolerance

through replication [11]. It replicates the input data across

multiple nodes, ensuring that the failure of single node does

not lead to data loss. If a node fails during computation, the

MapReduce framework automatically reschedules the failed

tasks on other available nodes.Another important point here is

the use of specialized tools for fault tolerance.The Fault

Tolerant Real-Time Cloud (FTRTC) project is a substantial

advancement.

The primary objective is to establish cloud computing

infrastructures that can support robust real-time applications,

similar to those used in Industry 4.0. This programme is

significant as it aims to establish a formalized approach to

designing real-time cloud applications that can effectively

handle different levels of fault tolerance throughout distributed

execution on the cloud [1]. Another innovative approach uses

machine learning to enhance fault tolerance mechanisms in the

cloud. This model is based on existing knowledge to predict

fault instances, so it can improve the efficiency of task

allocation in cloud servers [3]. These advancements show a

shift towards more intelligent fault tolerance mechanisms, not

only bound to the data-processing frameworks’ algorithms but

to the intelligent cloud environments these frameworks are

operating in.

Architecture:

IJSART - Volume 10 Issue 11 – NOVEMBER 2024 ISSN [ONLINE]: 2395-1052

Page | 159 www.ijsart.com

All frameworks that were discussed have distinct

architectures,with their features. For instance, a driver

application, cluster manager, worker nodesand RDDs serve as

the main data abstraction in Apache Spark’s master-worker

architecture [18]. It supports in-memory processing Spark’s

design enables it to run interactive and iterative workloads

effectively. On the other hand, the master-worker design of

Apache Flink additionally includes a Job Manager, Resource

Manager, and Task Managers [18]. The architecture of Flink

includes cutting-edge features like event time processing and

support for stateful computations, and it is intended for both

batch and stream processing [10]. Flink is suited for real-time

streaming applications because it places an emphasis on low-

latency processing and effective memory management.The

master-worker design of Hadoop MapReduce, on the other

hand, uses a Job Tracker and Task Trackers together with a

master worker [19]. It is driven by disk-based processing and

focuses on massive batch processing. MapReduce uses the

map and reduce functions to handle data that is stored in the

Hadoop Distributed File System (HDFS) [19]. Overall, the

design of Spark's quick in-memory processing, that of Flink

emphasizes low-latency stream processing, and that

ofMapReduce emphasizes batch processing with disk-based

operations.

II. CONCLUSION

This study offers a thorough analysis of the

performance, scalability, fault-tolerance, and comparison of

Apache Spark, Apache Flink, and Hadoop MapReduce

architectures. By synthesizing existing literature and

conducting comprehensive comparative analyses, the research

offers a unique perspective on the strengths and limitations of

each framework, thereby contributing to the advancement of

knowledge in the field of distributed data processing. The

outcomes show that switching from MapReduce technology to

Apache Spark or Apache Flink can result in significant

performance gains. When evaluating the migration, it is

crucial to consider the work needed to adapt MapReduce

workloads to the new APIs. Due to its maturity, size of the

Apache project, market share, and community, Spark currently

stands out as the best framework overall. In comparison to

Flink, Spark provides a greater set of operations and a wider

variety of tools. Nevertheless, Flink has offered novel

concepts that have influenced Spark’s advancement. Garbage

collection cost is reduced by Flink’s use of transparent

persistent memory management and customized object

serialization. Furthermore, explicit iterators in Flink have

demonstrated substantial advantages for iterative algorithms,

leading to noticeably quicker execution times as compared to

MapReduce and Spark. The selection of a framework is based

onparticular use cases and specifications for performance,

fault tolerance, and real-time processing. Overall, this analysis

clarifies the relative merits and contributions of Spark, Flink,

and MapReduce, emphasizing Spark as the present best option

while recognizing Flink’s creative concepts and future

development possibilities. Scientific contribution of the study

lies in its evaluation of these frameworks, shedding light on

their relative merits and providing recommendations for

businesses navigating the complex landscape of data

processing technologies.

REFERENCES

[1] Abeni L., Andreoli R., Gustafsson H., Mini R., Cucinotta

T. Fault Tolerance inReal-Time Cloud Computing // Proc.

of the 2023 I E EE 26th International Symposium on

Real-Time Distributed Computing (ISORC). – 2023. – P.

170-175;

[2] Azhir E., Hosseinzadeh M., Khan F., Mosavi A.

Performance Evaluation of Query Plan Recommendation

with Apache Hadoop and Apache Spark // Mathematics.–

2022. – Vol. 10, No. 19. – P. 3517;

[3] Babu P. R., Jimalo K. M., Gadiparthi M., Kumar K. R. N.

K. DistributedConsensus and Fault Tolerance

Mechanisms Using Distributed Machine Learning //Proc.

of the 2023 International Conference on Disruptive

Technologies (ICDT). –2023. – P. 11 9-123;

[4] Carbone P., Katsifodimos A., Kth K., Sweden S., Ewen

S., Markl V., Haridi S.,Tzoumas K. Apache Flink: Stream

and batch processing in a single engine // I E E E Data

Engineering Bulletin. – 2015. – Vol. 38;

[5] Ghazi M. R., Gangodkar D. Hadoop, MapReduce and

HDFS: A developer'sperspective // Elsevier B.V. – 2015.

– Vol. 48. – P. 45–50;

[6] George M. M., Rasmi P. S. Performance Comparison of

Apache Hadoop andApache Spark for COVID-19 data

sets // Proc. of the 2022 4th International Conference on

Smart Systems and Inventive Technology (ICSSIT). –

2022;Institute of Electrical, Electronics, and Engineers et

al. Symposium on Colossals

[7] Data Analysis and Networking (CDAN). – 2016

[8] Jaggi H. S., Kadam S. S. Integration of Spark framework

in supply chain management // Procedia Computer

Science. – 2016. – Vol. 79. – P. 1013–1020;

[9] Joshi B. Y., Shankar P., Sawai D. Performance Tuning Of

Apache SparkFramework In Big DataProcessing with

Respect To Block Size And Replication Factor

[10] Katsifodimos A., Schelter S. Apache Flink: Stream

analytics at scale // Proc. of the 2016 I E EE International

Conference on Cloud Engineering Workshop (IC2EW).

[11] Merla P., Liang Y. Data analysis using Hadoop

MapReduce environment// Proc.of the 2017 I E EE

IJSART - Volume 10 Issue 11 – NOVEMBER 2024 ISSN [ONLINE]: 2395-1052

Page | 160 www.ijsart.com

International Conference on Big Data (Big Data). – 2017.

– P.4783–4785;

[12] Natesan P., Sathishkumar V. E., Mathivanan S. K.,

Venkatasen M., Jayagopal P., Allayear S. M. A

Distributed Framework for Predictive Analytics Using

Big Data and MapReduce Parallel Programming //

Mathematical Problems in Engineering. –2023. – P. 1–10;

[13] Salloum S., Dautov R., Chen X., Peng P. X., Huang J. Z.

Big data analytics on Apache Spark // International

Journal of Data Science and Analytics. – 2016. – Vol.

1,No. 3–4. – P. 145–164;

[14] Shaikh E., Mohiuddin I., Alufaisan Y., Nahvi I. Apache

Spark: A big data processing engine // Proc. of the 2019

2nd I E EE Middle East and North Africa

Communications Conference (MENACOMM). – 2019. –

P. 1–6;

[15] Tran Q., Nguyen B., Nguyen L., Nguyen O. Big Data

Processing With Apache Spark // TraVinh University

Journal Of Science. – 2023;

[16] Ullah F., Dhingra S., Xia X., Babar M. A. Evaluation of

distributed data processing frameworks in hybrid clouds //

Journal of Network and Computer Applications. – 2024. –

Vol. 224. – P. 103837;

[17] Apache Software Foundation. Apache Flink

Documentation. – 2024. –Available

at:https://nightlies.apache.org/flink/flink-docs-stable/;–

2016. – P. 193–193;Apache Software Foundation. Apache

Spark Documentation. – 2023. Available at:

https://spark.apache.org;

[18] Aziz K., Zaidouni D., Bellafkih M. Big Data Optimisation

Among R D D s Persistence in Apache Spark//

Communications in Computer and Information Science.

2018. – P. 29–40

https://spark.apache.org;/

