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Abstract- The analysis and design of conventional multistoried
RC buildings is now a routine practice. Any departure from
much simplistic structural system needs an independent
investigation for producing a rational design. The proposed
work consists of a multistoried RC building with slanting
vertical profile. Such structure can easily be tackled through
the versatile finite element solution technique. Employing the
same the following aspects have been covered.

1. Pseudo-static seismic analysis as per
recommendations of IS 1893 (Part — 1): 2002.

2. To understand the influence of damping ratio in
above kind of analysis. The number of analysis are
performed with damping ratios 2%, 5%, 10% and
20%. It has been observed that the normal practice of
considering 5% damping ratio in case of concrete
structure has validity.

3. The structural components are governed almost by
the membrane actions and as the structure itself has
a closed form cellular constitution displacements are
quite small as is expected in such cases.

4. Marginal reinforcement is required to take care of
membrane action in all plates of the structure. While
designing the reinforcement the influence of flexural
action is negligible.

Keywords- Finite element analysis, Seismic analysis, Skew shaped
building, Earthquake excitation, FORTRAN - 77.

1. INTRODUCTION

During an earthquake, failure of structures starts at
the point of weakness. This weakness arises due to
discontinuity in mass, stiffness and geometry of structure. The
structures having this discontinuity are termed as Irregular
structures. Irregular structures contribute a large portion of
urban infrastructure. Vertical irregularities are one of the
major reasons of failures of structures during earthquakes. For
example structures with soft storey were the most notable
structures that collapsed. So, the effect of vertically
irregularities in the seismic performance of structures becomes
really important. Height-wise changes in stiffness and mass
render the dynamic characteristics of these buildings different
from the regular building.
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IS 1893 (Part — 1): 2002 definition of Vertically
Irregular structures:

The irregularity in the building structures may be due
to irregular distributions in their mass, strength and stiffness
along the height of building. When such buildings are
constructed in high seismic zones, the analysis and design
becomes more complicated. There are two types of
irregularities:

1. Plan Irregularities
2. Vertical Irregularities

Plan Irregularities

i) Re-entrant Corners — Plan configurations of a structure
and its lateral force resisting system contain re-entrant corners,
where both projections of the structure beyond the re-entrant
corner are greater than 15 percent of its plan dimension in the
given direction.

ii) Out-of-Plane Offsets — Discontinuities in a lateral force
resistance path, such as out-of-plane offsets of vertical
elements.

iii) Non-parallel Systems — The vertical elements resisting
the lateral force are not parallel to or symmetric about the
major orthogonal axes or the lateral force resisting elements.

Vertical Irregularities

i) Stiffness Irregularity — A soft storey is one in which the
lateral stiffness is less than 70 percent of the storey above or
less than 80 percent of the average lateral stiffness of the three
storey’s above.

i) Mass Irregularity — Mass irregularity shall be considered
to exist where the seismic weight of any storey is more than
200 percent of that of its adjacent storey’s. In case of roofs
irregularity need not be considered.

iii) Vertical Geometric Irregularity — A structure is
considered to be Vertical geometric irregular when the
horizontal dimension of the lateral force resisting system in
any storey is more than 150 percent of that in its adjacent
storey.
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iv) In Plane Discontinuity in Vertical Elements Resisting
Lateral Force — An in plane offset of the lateral force
resisting elements greater than the length of those elements.

v) Discontinuity in Capacity — Weak Storey — A weak storey
is one in which the storey lateral strength is less than 80
percent of that in the storey above

1. OBJECTIVES OF THE STUDY

1. To study the response of skew shaped RC structure under
seismic excitation.

2. Use of finite element method to obtain the response of
skew shaped structure using FORTRAN - 77 compiler.

3. To obtain the displacements, stresses and flexural
moments in members at various nodes and elements.

4. To check the suitability of Kirchhoff plate theory and
Mindlin plate theory in the present study.

5. To check the manual calculations with the results
obtained by using FORTRAN - 77, a small illustrative
example is considered and then it is to be used to find
response in the present study.

1. METHODOLOGY

The triangular plate element is denoted through its
nodes numbered as (1-2-3) in an anti clockwise fashion. It is
referred to local set of orthogonal axes (X, Y, Z) as shown in
Fig. 1. In this, the plate element is confined to the (X, Y) plane
and the z-axis is oriented in a direction normal to the plane of
the plate.

A plate element displays three independent modes of
deformation. These are membrane or plane stress mode,

flexural mode and drilling mode.

3
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Z

Fig. 1 Three nodded triangular plate element
(Local reference system)
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a) Membrane action
1. Interpolation function

The displacement [5,] at a point (X, y) over the
element is given by,

[6,]=[N"][6"]

where, [N™] — matrix of the interpolation functions.
Now,
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Fig. 2 (a) Element nodal displacements & (b) Nodal loads
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2. Strains

At a point (X, Y) the membrane action includes
normal strain &, in X direction, normal strain &, in Y direction,
and shear strain y.. The strain components are denoted by
element strain vector [gy] defined as

gx
[gm] = Sy

L (4)
3. Stresses

Associated with the strains considered above a point
(X, Y) over the element, the normal stress ox in X direction,
normal stress oy in Y direction and shear stress txy are
induced. The stress components that is denoted by an element
stress vector [op] defined as

Oy
[O-m] = O-Y

Yl (5)
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4. Stiffness Matrix

Element stiffness matrix [Ky] is given by,
[K.]=t[[[B,T [C,1[B,]dxdy
where, t — element thickness. The integral is taken over the

entire element area. In view of the fact that [B,,] and [C,] are
composed of constant coefficient,

[K,]1=tA[B,]"[C,][B,]
5. Element Load Vector

Element may be subjected to the pressure of
intensities (Px, Py) in (X, Y) directions and can be represented
by a vector [Py] given by,

PX
a7

b) Flexural action

Flexural action is carried out by the biaxial bending
deformations. This kind of deformation involves at a point
over the element, translation W in Z direction and rotation (Oy,
By) along (X, Y) axes, also force Fz in Z direction and couples
(Cx, Cy) along (X, Y) axes. Consequently, nodal
displacements and element nodal loads are as shown in Fig.
3(a) and Fig. 3(b) respectively. These are denoted through
vectors [0¢g] and [F¢] defined as

5 R
[6,]1= 52f [Fi]= sz
f
5 1 )
The sub vectors (8", F1") etc are as below
Wl FZl
[51f]: 9x1 [F1f]: Cx1
6, C.) (10)
Y 0xs

Fig. 3(a) Element nodal displacements
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Fig. 3(b) Element nodal loads
1. Interpolation function

W is the deflection at point (X, Y) over the element
and is given by,
W=[N"][5"]
where, [N'] — matrix of interpolation functions.

Assuming cubic variation of W over the element
domain, subject to condition that 6x = -dW/dY and 6y =
dw/dX, it could show that,

NIEN NNSN NN N NN
2. Generalized Strains

Consider a slice at a distance Z from the neutral
surface of the plate. The slice is subjected to normal strains
(ex, &y) and shear strains yxy. The strain in the element is given

by
— OAW/aX?
[e,]=| - o°W/ov?
20%W /XY
where, . #W:dx’ and -.#'W/d¥=are the curvatures around Y

axis and X axis respectively and 2 /ax:# represents the
twist of the deformed surface.

3. Generalized Stresses

At a point over a slice at a distance Z from the neutral
surface of plate, there prevails normal stress (ox, oy) and shear
stress Txy. The stresses in the element is given by,

My
[Gf]z M,
My

herein, My and My are the bending moments in X and Y
directions i.e. around Y and X axis respectively, whereas Myy
is the twisting moment.
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4. Stiffness matrix

Element stiffness matrix [K¢] is given by,
[K1=[[B,T'IC, (B ldxdy

The integral to be taken over the element area and
once again three-point numerical integration is convenient for
the purpose.

5. Element load vector

The element may be subjected to the pressure of
intensities Pz acting along Z directions and corresponding [F]
turns out to be,

[F,1=[[P,IN T dxdy

The integral is evaluated over the element surface through
three-point integration scheme.

¢) Drilling action

Drilling action is characterized by rotation 6 and
couple C; around Z axis. Consequently, the element nodal
displacements and the element nodal loads are shown in Fig.
4(a) and Fig. 4(b) respectively. These are denoted through
vectors [4] and [Fq] defined as

0, C,,
[(Sd]: 922 [Fd]= C,,
023 Co) (17)

(93]

v :
' . 107,
1y 67,
> X

Fig. 4(b) Element nodal loads
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Element local equilibrium is then converted to
element global equilibrium using transformation matrix.

d) Transformations

The element with local axes (x, y, z) is placed in the
global (X, Y, Z) spaces. A vector P in these spaces will have
components (P, Py, P;) in (X, y, z) directions and components

(Px, Py, Pz) in (X, Y, Z) directions.

It follows from vector mechanism that,

PY Px
P, |=[T] PR
P 2 (18)

where, [T] — mechanical transformation matrix defined as,

XX AXy AXz
[T]1=] AYx AYy AYz

AZx izy AZzypooo (19)
It could be shown that,
[F1=[RI[F."]. [KI=[RI'KIR] 20)

where, [R] — rotation matrix defined by the diagonal
placement of [T] matrix as below

(1]
(7]
_ (7]
[R]= [
(7]

m 1)
IV. RESULTS

The structure being considered for study is a skew shaped
reinforced concrete seven storey building with all vertical
walls inclined as shown in figure below.

b

=

Fig. 5 Three — dimensional view of the structure
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The idealization of the structure is shown in Appendix — I.

The solution by finite element technique for
evaluation of Displacements, Member Stresses and Bending
developed in the component can be carried out through three
basic steps:

1. Finite element idealization of the structure being
analyzed.

2. Formulation and solution of the equations governing
equilibrium of the idealized system and

3. Evaluation of the structural response.

The results for the skew shaped building under seismic
condition are obtained in the form of displacements, stresses
and moments in the members for Zone — 1V as per 1S 1893 —
2002. The results are presented in the form of table, figures
and contours.

1. Nodal displacements

The displacements developed due to horizontal
seismic forces are function of damping co-efficient (‘&’).
Following the spectrum curves of IS 1893: 2002, the
information being available for 2%, 5%, 10% and 20% the
analysis was performed for consideration being given to each
of the damping co-efficient. Force being applied in x -
direction the displacement developed is negligible in y -
direction but is significant in x — direction as well as in z -
direction.

The displacements at various floor levels are
presented in form of contours and presented in Appendix —I1.

The maximum horizontal displacements at various
floor levels for various damping coefficients are given below.

Table 1: Maximum displacements at various floor levels
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From above Table it shows that increasing the
damping ratio from 2% to 5% the horizontal displacement in
X — direction reduces significantly. However, for damping
ratio varying from 5% to 20% the decrease in displacements in
x- direction is marginal. In general, it is a practice that for
variety of concrete structures consideration of 5% damping
ratio in analysis is adequate. Hence in subsequent details
regarding stresses and moments developed, the results in
respect to only 5% damping is presented.

Though the displacements are largest for damping
ratio 2% their magnitude appear to be quite small. This is
expected because the structural system of the building is a
closed box cellular in which the dominant action is only
membrane hence the smaller values of the displacements.

2. Member Stresses

The membrane stresses at various floor levels are
essentially due to influence of in plane displacements. The
contours of the basic membrane stress components Gy, Oy, Tyy
in case of various floors are obtained. o and o, are normal
stresses in X and Y direction respectively and t,, is shear
stress. The stresses obtained for slab elements in form of
contours at various floor levels are presented in Appendix - 111
and maximum stresses at various floors are shown in Table 2.

Appendix — Il shows that the normal stresses
induced in the elements are of same order in X and Y —
directions in increasing pattern. The same increasing pattern is
observed in shear stresses

Table 2: Maximum stresses at various floor levels

I;i?'bfr Z: Z: Z: Z: Z: Z: Z:
[]33;1; Sm | 6m | 9m | 12m | 15m | 18m | 2Im
o, &o, | %0 | 80 [ 60| 30 [ 40 | 40 [ 40

oy 0[50 40 40 [ 20 10 10

gaﬁnﬂj I=|Z=| 2= Z= = | Z=|Z=
' ‘m | fm | Ym | m | Um | 13m | 2lm
2% 05 | 120 (192270 | 347 | 420 | 490
3% 04 | 083134 187|230 280|339
10% | 03 (064 102 | 142 | 182|220 236
0% |02 {047 078107 137 167|195

Scale = Value x 10%mm
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For elements at all levels the membrane normal
stresses are maximum at lowest level and with increase in
height it reduces. Same observation is made with respect to
shear stresses. In view of this observation it is obvious that
some reinforcement would be required whose amount will
depend on values of above stresses. It is a general practice to
provide required steel in manner of equal steel area at top and
bottom section of the plates. It is obvious that such
reinforcement would be needed in both x and y — direction.
The shear stress would be accounted through diagonal
placement of reinforcement at the corner of the plates.
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It is observed from Table 2 that the normal stresses
does not changes up to second floor and thereafter it reduces
significantly due to reduction in the base shear in subsequent
floors. The same observation is made for shear stresses. The
normal stresses reduce by 50% between first floor and top
floor and shear stress by 80%.

3. Flexural Moments

The membrane bending at various floor levels are
essentially due to influence of in plane displacements. The
contour of the basic bending moments My, My and M,y in case
of various floors are presented in Appendix — IV. M, and M,
are moments due to in plane bending and M,y is moment due
to rotation.

Table 3: Maximum flexural moments at various floor levels
(Positive moments)

Flexurzl
Moments | Z= | Z= | Z=| Z= = = =
mm | m | fm | %m | 12m | 5m | 18m | 2im
rum)
M8 M, 4 4 4 6 b 10 10
M., 2 2 2 3 3 3 4

Table 4: Maximum flexural moments at various floor levels
(Negative moments)

o | z= | z=|z=| z= | 2= | z= | Z-

CImEnts

Nmm | m | ém | %m | 12m | 15m | 18m | 2im
nm)

M&M, | 6 | 4| 4 4 -3 -3 -10
M., 2 2| 2 2 -1 -3 4

From the details presented in Table 3 and 4 the
following conclusions are noteworthy:

a) At each floor level the positive as well as negative moments
get developed. However, their values are more or less
comparable. In view of this the additional reinforcement
requirement could be computed ignoring the sign of the
moment because as mentioned earlier provision of equal steel
on both the faces the lever arm between two levels of
reinforcement would decide the additional steel area required.

b) The value of M,y is normally not important in further
enhancing reinforcement requirements. In fact with equal steel
being provided on either face the M,y is just added to M, and
My to update the values of M, and M.
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The structure under study was also analyzed in Staad
Pro. and the results obtained are comparable as shown below.

Table 5: Maximum horizontal displacements at various floor
levels (as obtained from Staad Pro.)

Dampmg | 7= | z=| 2= | Z= | Z= | Z= | Z=
Fatio'l | 3 | 6m | Om | 12m | 15m | 18m | 2Im
5% | 022|057 | 088|142 18 | 236 28

Scale = Value x 107

Table 6: Maximum stresses at various floor levels

Is'kigfﬂ.b? z = = Z = Z = Z = z = z =
[L‘E_f\iii m | 6m | %m | 12m | 15m | 18m | 2im
oko, |90 [ 7838 38 [ 40 [ 12 |137

Table 7: Maximum moments at various floor levels
(Positive moments)

Flexural
Moments | 2= | Z= | £=| Z= | Z= = =
Nmm | 3m | 6m | %m | 12m | {5m | 18m | 2im

un)
MM, | 66 | 34 | 43 6 33 10 10

V.CONCLUSION

On the basis of details presented above it is possible to
conclude as follows:

1. Consideration of 5% damping ratio is adequate from
practical point of view.

2. The membrane stresses at all floor levels are tensile
in nature.

3. The flexural moments developed have both positive
as well as negative moments.

4. As per walls are concerned flexural moments are
negligible where as membrane stresses for small
region at the base of the wall is compressive whereas
above the base membrane stresses are tensile with
maximum values being in the top region.

5. The structure studied in FORTRAN - 77 is also
analyzed in Staad Pro. and the displacement results
obtained are comparable.
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Displacement contour at various floor levels
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APPENDIX - 111
Member stresses at various floor levels
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APPENDIX - IV
Flexural moments at various floor levels
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Member Stress ‘o' at £<12m
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