
IJSART - Volume 1 Issue 7 –JULY 2015                                                                                             ISSN [ONLINE]: 2395-1052 

Page | 132                                                                                                                                                                     www.ijsart.com 
 

Seismic Analysis of Skew Shaped RC Building 
 

Niravkumar G. Patel1, Sunil M. Rangari2 
Department of Civil Engineering 

1, 2 Savetribai Phule Pune University, Dr. D Y Patil School of Engineering, Lohegaon, Pune, Maharashtra 412105, India 
 

Abstract- The analysis and design of conventional multistoried 
RC buildings is now a routine practice. Any departure from 
much simplistic structural system needs an independent 
investigation for producing a rational design. The proposed 
work consists of a multistoried RC building with slanting 
vertical profile. Such structure can easily be tackled through 
the versatile finite element solution technique. Employing the 
same the following aspects have been covered. 
 

1. Pseudo-static seismic analysis as per 
recommendations of IS 1893 (Part – I): 2002. 

2. To understand the influence of damping ratio in 
above kind of analysis. The number of analysis are 
performed with damping ratios 2%, 5%, 10% and 
20%. It has been observed that the normal practice of 
considering 5% damping ratio in case of concrete 
structure has validity. 

3. The structural components are governed almost by 
the membrane actions and as the structure itself has 
a closed form cellular constitution displacements are 
quite small as is expected in such cases. 

4. Marginal reinforcement is required to take care of 
membrane action in all plates of the structure. While 
designing the reinforcement the influence of flexural 
action is negligible. 

 
Keywords- Finite element analysis, Seismic analysis, Skew shaped 
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I. INTRODUCTION 
 

During an earthquake, failure of structures starts at 
the point of weakness. This weakness arises due to 
discontinuity in mass, stiffness and geometry of structure. The 
structures having this discontinuity are termed as Irregular 
structures. Irregular structures contribute a large portion of 
urban infrastructure. Vertical irregularities are one of the 
major reasons of failures of structures during earthquakes. For 
example structures with soft storey were the most notable 
structures that collapsed. So, the effect of vertically 
irregularities in the seismic performance of structures becomes 
really important. Height-wise changes in stiffness and mass 
render the dynamic characteristics of these buildings different 
from the regular building. 
 

IS 1893 (Part – I): 2002 definition of Vertically 
Irregular structures:  

 
The irregularity in the building structures may be due 

to irregular distributions in their mass, strength and stiffness 
along the height of building. When such buildings are 
constructed in high seismic zones, the analysis and design 
becomes more complicated. There are two types of 
irregularities: 
1. Plan Irregularities  
2. Vertical Irregularities 
 
Plan Irregularities 
 
i) Re-entrant Corners – Plan configurations of a structure 
and its lateral force resisting system contain re-entrant corners, 
where both projections of the structure beyond the re-entrant 
corner are greater than 15 percent of its plan dimension in the 
given direction. 
 
ii) Out-of-Plane Offsets – Discontinuities in a lateral force 
resistance path, such as out-of-plane offsets of vertical 
elements. 
 
iii) Non-parallel Systems – The vertical elements resisting 
the lateral force are not parallel to or symmetric about the 
major orthogonal axes or the lateral force resisting elements. 
 
Vertical Irregularities 
 
i) Stiffness Irregularity – A soft storey is one in which the 
lateral stiffness is less than 70 percent of the storey above or 
less than 80 percent of the average lateral stiffness of the three 
storey’s above.  
 
ii) Mass Irregularity – Mass irregularity shall be considered 
to exist where the seismic weight of any storey is more than 
200 percent of that of its adjacent storey’s. In case of roofs 
irregularity need not be considered.  
 
iii) Vertical Geometric Irregularity – A structure is 
considered to be Vertical geometric irregular when the 
horizontal dimension of the lateral force resisting system in 
any storey is more than 150 percent of that in its adjacent 
storey. 
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iv) In Plane Discontinuity in Vertical Elements Resisting 
Lateral Force – An in plane offset of the lateral force 
resisting elements greater than the length of those elements. 
  
v) Discontinuity in Capacity – Weak Storey – A weak storey 
is one in which the storey lateral strength is less than 80 
percent of that in the storey above 

 
II. OBJECTIVES OF THE STUDY 

 
1. To study the response of skew shaped RC structure under 

seismic excitation. 
2. Use of finite element method to obtain the response of 

skew shaped structure using FORTRAN – 77 compiler. 
3. To obtain the displacements, stresses and flexural 

moments in members at various nodes and elements. 
4. To check the suitability of Kirchhoff plate theory and 

Mindlin plate theory in the present study.  
5. To check the manual calculations with the results 

obtained by using FORTRAN – 77, a small illustrative 
example is considered and then it is to be used to find 
response in the present study. 

 
III. METHODOLOGY 

 
The triangular plate element is denoted through its 

nodes numbered as (1-2-3) in an anti clockwise fashion. It is 
referred to local set of orthogonal axes (X, Y, Z) as shown in 
Fig. 1. In this, the plate element is confined to the (X, Y) plane 
and the z-axis is oriented in a direction normal to the plane of 
the plate. 

 
A plate element displays three independent modes of 

deformation. These are membrane or plane stress mode, 
flexural mode and drilling mode. 

 

 
Fig. 1 Three nodded triangular plate element  

(Local reference system) 
 

a) Membrane action 
 
1. Interpolation function 
 

The displacement [δm] at a point (x, y) over the 
element is given by, 
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m N                                   ……(1) 

where, [Nm] – matrix of the interpolation functions. 
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Fig. 2 (a) Element nodal displacements & (b) Nodal loads 
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2. Strains 
 

At a point (X, Y) the membrane action includes 
normal strain εx in X direction, normal strain εy in Y direction, 
and shear strain γxy. The strain components are denoted by 
element strain vector [εm] defined as 
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3. Stresses 
 

Associated with the strains considered above a point 
(X, Y) over the element, the normal stress σX in X direction, 
normal stress σY in Y direction and shear stress τXY are 
induced. The stress components that is denoted by an element 
stress vector [σm] defined as 
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4. Stiffness Matrix 
 

Element stiffness matrix [Km] is given by, 

 dxdyBCBtK mm
T

mm ]][[][][           ……(6) 
where, t – element thickness. The integral is taken over the 
entire element area. In view of the fact that [Bm] and [Cm] are 
composed of constant coefficient, 

]][[][][ mm
T

mm BCBtK                    ……(7) 
 
5. Element Load Vector 
 

Element may be subjected to the pressure of 
intensities (PX,, PY) in (X, Y) directions and can be represented 
by a vector [Pm] given by, 
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b) Flexural action 
 

Flexural action is carried out by the biaxial bending 
deformations. This kind of deformation involves at a point 
over the element, translation W in Z direction and rotation (θX, 
θY) along (X, Y) axes, also force FZ in Z direction and couples 
(CX, CY) along (X, Y) axes. Consequently, nodal 
displacements and element nodal loads are as shown in Fig. 
3(a) and Fig. 3(b) respectively. These are denoted through 
vectors [δf] and [Ff] defined as 
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The sub vectors (δ1

f, F1
f) etc are as below 
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Fig. 3(a) Element nodal displacements 

 
Fig. 3(b) Element nodal loads 

 

1. Interpolation function 
 

W is the deflection at point (X, Y) over the element 
and is given by, 

]][[ ffNW                               ……(11) 
where, [Nf] – matrix of interpolation functions. 
 

Assuming cubic variation of W over the element 
domain, subject to condition that θX = -dW/dY and θY = 
dW/dX, it could show that, 
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2. Generalized Strains 
 

Consider a slice at a distance Z from the neutral 
surface of the plate. The slice is subjected to normal strains 
(εX, εy) and shear strains γXY. The strain in the element is given 
by 
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where,  and are the curvatures around Y 
axis and X axis respectively and  represents the 
twist of the deformed surface. 
 
3. Generalized Stresses 
 

At a point over a slice at a distance Z from the neutral 
surface of plate, there prevails normal stress (σX, σY) and shear 
stress τXY. The stresses in the element is given by, 


















XY

Y

X

f

M
M
M

][

                                        ……(14) 
herein, MX and MY are the bending moments in X and Y 
directions i.e. around Y and X axis respectively, whereas MXY 
is the twisting moment.  
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4. Stiffness matrix 
 
Element stiffness matrix [Kf] is given by, 

 dxdyBCBK ff
T

ff ]][[][][                ……(15) 
 

The integral to be taken over the element area and 
once again three-point numerical integration is convenient for 
the purpose. 
 
5. Element load vector 
 

The element may be subjected to the pressure of 
intensities PZ acting along Z directions and corresponding [Ff] 
turns out to be, 

 dxdyNPF Tf
Zf ][][                         ……(16) 

The integral is evaluated over the element surface through 
three-point integration scheme. 
 
c) Drilling action 
 

Drilling action is characterized by rotation θZ and 
couple CZ around Z axis. Consequently, the element nodal 
displacements and the element nodal loads are shown in Fig. 
4(a) and Fig. 4(b) respectively. These are denoted through 
vectors [δd] and [Fd] defined as 

 


















3

2

1

][

Z

Z

Z

d























3

2

1

][

Z

Z

Z

d

C
C
C

F

                  ……(17) 

 
Fig. 4(a) Element nodal displacements 

 
Fig. 4(b) Element nodal loads 

Element local equilibrium is then converted to 
element global equilibrium using transformation matrix. 

 
d) Transformations 
 

The element with local axes (x, y, z) is placed in the 
global (X, Y, Z) spaces. A vector P in these spaces will have 
components (Px, Py, Pz) in (x, y, z) directions and components 
(PX, PY, PZ) in (X, Y, Z) directions. 

 
It follows from vector mechanism that, 


































z

y

x

X

Z

Y

P
P
P

T
P
P
P

][

                                            ……(18) 
 
where, [T] – mechanical transformation matrix defined as, 
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It could be shown that, 
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where, [R] – rotation matrix defined by the diagonal 
placement of [T] matrix as below 
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IV.  RESULTS 

The structure being considered for study is a skew shaped 
reinforced concrete seven storey building with all vertical 
walls inclined as shown in figure below. 

 
Fig. 5 Three – dimensional view of the structure 
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The idealization of the structure is shown in Appendix – I. 
 
 The solution by finite element technique for 
evaluation of Displacements, Member Stresses and Bending 
developed in the component can be carried out through three 
basic steps: 
 

1. Finite element idealization of the structure being 
analyzed. 

2. Formulation and solution of the equations governing 
equilibrium of the idealized system and 

3. Evaluation of the structural response. 
 

The results for the skew shaped building under seismic 
condition are obtained in the form of displacements, stresses 
and moments in the members for Zone – IV as per IS 1893 – 
2002. The results are presented in the form of table, figures 
and contours. 
 
1. Nodal displacements 
 

The displacements developed due to horizontal 
seismic forces are function of damping co-efficient (‘ξ’). 
Following the spectrum curves of IS 1893: 2002, the 
information being available for 2%, 5%, 10% and 20% the 
analysis was performed for consideration being given to each 
of the damping co-efficient. Force being applied in x – 
direction the displacement developed is negligible in y – 
direction but is significant in x – direction as well as in z – 
direction. 
 

The displacements at various floor levels are 
presented in form of contours and presented in Appendix –II. 
 

The maximum horizontal displacements at various 
floor levels for various damping coefficients are given below. 

 
Table 1: Maximum displacements at various floor levels 

 
Scale = Value x 10-2mm 

 From above Table it shows that increasing the 
damping ratio from 2% to 5% the horizontal displacement in 
X – direction reduces significantly. However, for damping 
ratio varying from 5% to 20% the decrease in displacements in 
x- direction is marginal. In general, it is a practice that for 
variety of concrete structures consideration of 5% damping 
ratio in analysis is adequate. Hence in subsequent details 
regarding stresses and moments developed, the results in 
respect to only 5% damping is presented.  
 

Though the displacements are largest for damping 
ratio 2% their magnitude appear to be quite small. This is 
expected because the structural system of the building is a 
closed box cellular in which the dominant action is only 
membrane hence the smaller values of the displacements. 
 
2. Member Stresses  
 

The membrane stresses at various floor levels are 
essentially due to influence of in plane displacements. The 
contours of the basic membrane stress components σx, σy, τxy 
in case of various floors are obtained. σx and σy are normal 
stresses in X and Y direction respectively and τxy is shear 
stress. The stresses obtained for slab elements in form of 
contours at various floor levels are presented in Appendix - III 
and maximum stresses at various floors are shown in Table 2. 
 

Appendix – III shows that the normal stresses 
induced in the elements are of same order in X and Y – 
directions in increasing pattern. The same increasing pattern is 
observed in shear stresses 

 
Table 2: Maximum stresses at various floor levels 

 
 
 For elements at all levels the membrane normal 
stresses are maximum at lowest level and with increase in 
height it reduces. Same observation is made with respect to 
shear stresses. In view of this observation it is obvious that 
some reinforcement would be required whose amount will 
depend on values of above stresses. It is a general practice to 
provide required steel in manner of equal steel area at top and 
bottom section of the plates. It is obvious that such 
reinforcement would be needed in both x and y – direction. 
The shear stress would be accounted through diagonal 
placement of reinforcement at the corner of the plates. 
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  It is observed from Table 2 that the normal stresses 
does not changes up to second floor and thereafter it reduces 
significantly due to reduction in the base shear in subsequent 
floors. The same observation is made for shear stresses. The 
normal stresses reduce by 50% between first floor and top 
floor and shear stress by 80%. 
 
3. Flexural Moments 
 

The membrane bending at various floor levels are 
essentially due to influence of in plane displacements. The 
contour of the basic bending moments Mx, My and Mxy in case 
of various floors are presented in Appendix – IV. Mx and My 
are moments due to in plane bending and Mxy is moment due 
to rotation. 
 

Table 3: Maximum flexural moments at various floor levels 
(Positive moments) 

 
 

Table 4: Maximum flexural moments at various floor levels 
(Negative moments) 

 
  
 From the details presented in Table 3 and 4 the 
following conclusions are noteworthy: 
 
a) At each floor level the positive as well as negative moments 
get developed. However, their values are more or less 
comparable. In view of this the additional reinforcement 
requirement could be computed ignoring the sign of the 
moment because as mentioned earlier provision of equal steel 
on both the faces the lever arm between two levels of 
reinforcement would decide the additional steel area required. 
 
b) The value of Mxy is normally not important in further 
enhancing reinforcement requirements. In fact with equal steel 
being provided on either face the Mxy is just added to Mx and 
My to update the values of Mx and My. 
 

The structure under study was also analyzed in Staad 
Pro. and the results obtained are comparable as shown below. 
 
Table 5: Maximum horizontal displacements at various floor 

levels (as obtained from Staad Pro.) 

 
 
Scale = Value x 10-2 
 

Table 6: Maximum stresses at various floor levels 

 
 

Table 7: Maximum moments at various floor levels  
(Positive moments) 

 
 

V. CONCLUSION 
 
On the basis of details presented above it is possible to 
conclude as follows: 

1. Consideration of 5% damping ratio is adequate from 
practical point of view. 

2. The membrane stresses at all floor levels are tensile 
in nature. 

3. The flexural moments developed have both positive 
as well as negative moments. 

4. As per walls are concerned flexural moments are 
negligible where as membrane stresses for small 
region at the base of the wall is compressive whereas 
above the base membrane stresses are tensile with 
maximum values being in the top region. 

5. The structure studied in FORTRAN – 77 is also 
analyzed in Staad Pro. and the displacement results 
obtained are comparable. 
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APPENDIX – I 
 

 
(a) Floor slab at Z = 0.0 m & X = Y = 6 m 

Floor idealization for base floor 
 

 
(b) Floor slab at Z = 3.0 m & X = Y = 6.5 m 

Floor idealization for 1st floor 

 

 
(c) Floor slab at Z = 6.0 m & X = Y = 7 m 

Floor idealization for 2nd floor 

 
(d) Floor slab at Z = 9.0 m & X = Y = 7.4 m 

Floor idealization for 3rd floor 

 

 
(e) Floor slab at Z = 12.0 m & X = Y = 7.8m 

Floor idealization for 4th floor 

 

 
(f) Floor slab at Z = 15.0 m & X = Y = 8.2 m 

Floor idealization for 5th floor 
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(g) Floor slab at Z = 18.0 m & X = Y = 8.6 m 

Floor idealization for 6th floor 

 

 
(h) Floor slab at Z = 21.0 m & X = Y = 9 m 

Floor idealization for 7th floor 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

APPENDIX – II 
Displacement contour at various floor levels 
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APPENDIX – III 
Member stresses at various floor levels 
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APPENDIX – IV 
Flexural moments at various floor levels 
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