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Abstract- We don't forget the difficulty of discovering 
organization principles between gadgets in a colossal 
database of earnings transactions. We reward two new 
algorithms for solving thii concern which can be essentially 
exclusive from the identified algorithms. Empirical analysis 
suggests that these algorithms outperform the recognized 
algorithms through motives starting from three for small 
problems to greater than an order of magnitude for massive 
problems. We additionally show how the nice points of the 2 
proposed algorithms may also be mixed right into a hybrid 
algorithm, called AprioriHybrid. Scale-up experiments show 
that AprioriHybrid scales linearly with the quantity of 
transactions. AprioriHybrid additionally has fine scale-up 
properties with admire to the transaction size and the number 
of gadgets within the database. 
 
Keywords- Privacy keeping knowledge Mining; disbursed 
Computation; standard Itemsets; organization principles. 
 

I. INTRODUCTION 
 

Growth in bar-code technology has made it viable for 
retail corporations to collect and store gigantic quantities of 
income information, known as the basket knowledge. A 
document in such data frequently includes the transaction date 
and the objects bought in the transaction. Effective firms view 
such databases as important portions of the marketing  
infrastructure. They're desirous about instituting know-how-
driven marketing approaches, managed by way of database 
technology, that enable marketers to enhance and implement 
customized marketing applications and procedures [S]. The 
difficulty of mining association principles over basket 
knowledge was introduced in [4]. An instance of such a rule 
maybe that 98% of purchasers that purchase Tires and auto 
components additionally get car offerings achieved. 
Discovering all such ideas is valuable for crossmarketing and 
hooked up mailing functions. Other applications incorporate 
catalog design, add-on earnings, store layout, and patron 
segmentation situated on shopping patterns. The databases 
worried in these applications are very big. It's relevant,  
therefore, to have fast algorithms for this project. 

 
The following is a proper statement of the drawback 

[4]: Let Z =( i1,i2, . . . , im) be a suite of literals, known as 
items. Let 2) be a suite of transactions, the place every 

transaction T is a collection of objects such that T c Z. Related 
to each transaction is a detailed identifier, known as its TID. 
We say that a transaction T involves X, a suite of some 
gadgets in Z, if X c T. In the absence of this type of relied on 
third celebration, it is needed to plan a protocol that the avid 
gamers can run on their possess so as to arrive at the required 
output y. The sort of protocol is considered flawlessly 
comfortable if no player can learn from his view of the 
protocol greater than what he would have learnt in the 
idealized setting where the computation is implemented via a 
relied on 1/3 social gathering. Yao [32] was once the first to 
advocate a popular answer for this concern within the case of 
two avid gamers. Different ordinary solutions, for the multi-
occasion case, have been later proposed in [3], [5], [15]. 

 
In our obstacle, the inputs are the partial databases, 

and the desired output is the list of association principles that 
preserve in the unified database with help and self belief no 
smaller than the given thresholds s and c, respectively. As the 
above recounted generic solutions rely upon a description of 
the perform f as a Boolean circuit, they can be applied most 
effective to small inputs and features which can be realizable 
through easy circuits. In additional complicated settings, such 
as ours, other  approaches are required for engaging in this 
computation. In such instances, some relaxations of the 
proposal of ideal safety probably inevitable when looking for 
useful protocols, furnished that the excess understanding is 
deemed benign (see examples of such protocols in e.G. [18], 
[28], [29], [31], [34]). 

 
Kantarcioglu and Clifton studied that drawback in 

[18] and devised a protocol for its answer. The predominant a 
part of the protocol is a sub-protocol for the cozy computation 
of the union of personal subsets that are held by way of the 
exceptional players. (The confidential subset of a given 
participant, as we give an explanation for under, entails the 
itemsets that are s-universal in his partial database.) That is 
probably the most pricey part of the protocol and its 
implementation relies upon cryptographic primitives 
equivalent to commutative encryption, oblivious transfer, and 
hash functions. This is also the one part in the protocol where 
the players could extract from their view of the protocol 
knowledge on other databases, beyond what's implied via the 
ultimate output and their own enter. 
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Even as such leakage of understanding renders the 
protocol no longer perfectly relaxed, the perimeter of the 
surplus information is explicitly bounded in [18] and it is 
argued there that such knowledge leakage is innocuous, 
whence acceptable from a useful point of view. 

 
Herein we endorse an alternative protocol for the 

comfortable computation of the union of personal subsets. The 
proposed protocol improves upon that in [18] in phrases of 
simplicity and effectivity as well as privateness. In unique, our 
protocol does not depend upon commutative encryption and 
oblivious transfer (what simplifies it vastly and contributes 
towards much reduced communiqué and computational costs). 
Even as our answer continues to be no longer flawlessly 
comfy, it leaks excess expertise simplest to a small number 
(three) of possible coalitions, unlike the protocol of [18] that 
discloses know-how also to a couple single players.  
Furthermore, we declare that the excess information 2 that our 
protocol may leak is much less touchy than the surplus 
knowledge leaked by the protocol of [18]. 

 
The protocol that we recommend here computes a 

parameterized loved ones of services, which we call threshold 
services, wherein the 2 extreme circumstances correspond to 
the problems of computing the union and intersection of 
personal subsets. These are in fact common-intent protocols 
that can be utilized in different contexts as well. A different 
challenge of secure multiparty computation that we solve here 
as a part of our discussion is the set inclusion problem; 
specifically, the obstacle where Alice holds a private subset of 
some floor set, and Bob holds an element within the ground 
set, they usually want to verify whether Bob’s detail is within 
Alice’s subset, with out revealing to either of them expertise in 
regards to the other occasion’s input beyond the above 
described inclusion. 

 
1.1 Main issue Decomposition and Paper institution 

 
The challenge of discovering all association 

principles can be decomposed into two subproblems [4]: 
 
1. In finding all units of gadgets (itemseis) which have 

transaction aid above minimal support. The support. 
2. For an item set is the quantity of transactions that 

incorporate the item set. Item sets with minimal help are 
called massive itemsets, and all others small item sets. In 
section 2, we give new algorithms, Apriori and 
AprioriTid, for fixing this drawback. Use the gigantic 
itemsets to generate the favored rules. Right here is a 
straightforward algorithm for this mission. For each 
gigantic itemset 1, to find all non-empty subsets of 1. For 
every such subset a, output a rule of the form a => (l - a) 

if the ratio of aid(l) to help(a) is at least minconf  We need 
to do not forget all subsets of 1 to generate principles with 
multiple consequents. Due to lack of area, we do not talk 
about this subproblem further, but refer the reader to [5] 
for a speedy algorithm. 
 

In part three, we exhibit the relative performance of 
the proposed Apriori and AprioriTid algorithms towards the 
AIS [4] and SETM [13] algorithms. To make the paper self-
contained, we incorporate an overview of the AIS and SETM 
algorithms in this section. We also describe how the Apriori 
and AprioriTid algorithms will also be combined into a hybrid 
algorithm, AprioriHybrid, and exhibit the scale up homes of 
this algorithm. We conclude by using declaring some related 
open issues in section four. 

 
II. DISCOVERING MASSIVE ITEMSETS 
 
Algorithms for discovering big itemsets make a 

couple of passes over the data. Within the first move, we rely 
the aid of character objects and investigate which of them are 
significant, i.E. Have minimumsupport. In every subsequent 
move, we start with a seed set of itemsets located to be 
enormous in the prior cross. We use this seed set for 
producing new potentially huge itemsets, known as candidate 
itemsets, and count the precise support for these candidate 
itemsets during the go over the data. At the end of the cross, 
we check which of the candidate itemsets are truly gigantic, 
they usually grow to be the seed for the next cross. This 
process continues unless no new massive itemsets are 
determined. 

 
The Apriori and AprioriTid algorithms we 

recommend range essentially from the AIS [4] and SETM [13] 
algorithms in phrases of which candidate itemsets are counted 
in a move and in the way that these candidates are generated. 
In each the AIS and SETM algorithms, candidate itemsets are 
generated on-the-fly for the period of the go as data is being 
read. Particularly, after studying a transaction, it's decided 
which of the itemsets found enormous in the earlier cross are 
present within thetransaction. New candidate itemsets are 
generated via extending these colossal itemsets with different 
objects in the transaction. However, as we will be able to see, 
the disadvantage is that this results in unnecessarily producing 
and counting too many candidate itemsets that prove to be 
small. 

 
The Apriori and AprioriTid algorithms generate the 

candidate itemsets to depend in a go by means of utilising 
handiest the itemsets located massive in the earlier cross - 
without seeing that the transactions in the database. The 
elemental instinct is that any subset of a large itemset have to 
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be colossal. For that reason, the candidate itemsets having 
okay objects can be generated via joining gigantic itemsets 
having okay - 1 items, and deleting those who include any 
subset that's not big. This approach outcome in iteration of a a 
lot smaller number of candidate itemsets. 

 
The AprioriTid algorithm has the further property 

that the database is not used at inquisitive about counting the 
aid of candidate itemsets after the primary go. Rather, an 
encoding of the candidate itemsets used in the prior pass is 
employed for this cause. 

 
In later passes, the size of this encoding can emerge 

as a lot smaller than the database, as a consequence saving a 
lot reading effort. We will be able to give an explanation for 
these elements in additional detail once we describe the 
algorithms. Notation We assume that items in each transaction 
are stored sorted of their lexicographic order. It is simple to 
adapt these algorithms to the case the place the database 2, is 
stored normalized and each database file is a <TID, item> 
pair, where TID is the identifier of the corresponding 
transaction. 

 
We call the quantity of items in an itemset its 

measurement, and phone an itemset of measurement okay a k-
itemset. Items within an itemset are saved in lexicographic 
order. We use the notation c[l] . C[2] . . . . . C[k] to represent a 
kitemset c along with items c[l], c[2], . . .C[k], where 

c[l] < c[2] < . . . < c[k]. If c = X + Y and Y 

is an m-itemset, we also name Y an m-eziension of X. Related 
to each itemset is a count subject to retailer the aid for this 
itemset. The count discipline is initialized to zero when the 
itemset is first created. 
 
 We summarize in table 1 the notation used within the 
algorithms. The set i?K is utilized by AprioriTid and can be 
further discussed after we describe this algorithm. 
 

 
 

1.3 A running example 
 

Let D be a database of N = 18 itemsets over a set of L 
= 5 items, A = {1, 2, 3, 4, 5}. It is partitioned between M = 3 
players, and the corresponding partial databases are: 
 
D1 = {12, 12345, 124, 1245, 14, 145, 235, 24, 24} 
D2 = {1234, 134, 23, 234, 2345} 
D3 = {1234, 124, 134, 23} . 
 

For example, D1 includes N1 = 9 transactions, the 
third of which (in lexicographic order) consists of 3 items — 
1, 2 and 4. Setting s = 1/3, an itemset is s-frequent in D if it is 
supported by at least 6 = sN of its  transactions. In this case,  
 
F1s = {1, 2, 3, 4} 
F2s = {12, 14, 23, 24, 34} 
F3s = {124} 
F4s = F5s = � , 
and Fs = F1s∪F2 s∪F3 
s . For example, the itemset 34 is indeed globally s-frequent 
since it is contained in 7 transactions of D. However, it is 
locally s-frequent only in D2 and D3. 3  In the first round of 
the FDM algorithm, the three players compute the sets C1,m s 
of all 1-itemsets that are locally frequent at their partial 
databases:  
 

C1,1 s = {1, 2, 4, 5} ,  
C1,2 s = {1, 2, 3, 4} ,  
C1,3 s = {1, 2, 3, 4} . 
 
Hence, C1s = {1, 2, 3, 4, 5}. Consequently, all 1-itemsets have 
to be checked for being globally frequent; that check reveals 
that the subset of globally s-frequent 1-itemsets is F1s = {1, 2, 
3, 4}.In the second round, the candidate itemsets are: 
 

C2,1s = {12, 14, 24} 
C2,2s = {13, 14, 23, 24, 34} 
C2,3s = {12, 13, 14, 23, 24, 34} . 
(Note that 15, 25, 45 are locally s-frequent at D1 but they are 
not included in C2,1 s since 5 was already found to be globally 
infrequent.) Hence, C2 s = {12, 13, 14, 23, 24, 34}. 
 
Then, after veryfing global frequency, we are left with F2 s = 
{12, 14, 23, 24, 34}. 
 

In the third round, the candidate itemsets are: 
C3,1s = {124} , C3,2s = {234} , C3,3s = {124} . 
So, C3s = {124, 234} and, then, F3s = {124}. There are no 
more frequent itemsets. 
 

---------------------------------------------------------------- 
1) L1 = {large 1-itemsets}; 
2) for ( k = 2; Lk-1 # 0; k++ ) do begin 
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3) ck = apIiO&geu(&l); // New candidates 
4) forall transactions 1 E 2) do begin 
5) C* = S&S&(&, t); // Candidatea COntahd in t 
6) forall candidates c E Cr do 
7) c.count++; 
8) end 
9) Lk = {C E ck 1 C.count 2 minsup} 
10) end 
11) Answer = Uk Lk; 
---------------------------------------------------------------- 

Figure 1: Algorithm Apriori 
 
2.1.2 Subset operate 
 

Candidate itemsets Ck are stored in a hash-tree. A 
node of the hash-tree either includes a list of itemsets (a leaf 
node) or a hash desk (an interior node). In an inside node, 
every bucket of the hash desk aspects to one more node. The 
foundation of the hash-tree is outlined to be at depth 1. An 
inside node at depth d features to nodes at depth d+ 1. Itemsets 
are stored in the leaves. Once we add an itemset c, we start 
from the root and go down the tree unless we attain a leaf. At 
an interior node at depth d, we come to a decision which 
department to follow by way of applying a hash perform to the 
dth item of the itemset. All nodes are initially created as leaf 
nodes. 
 
  When the quantity of itemsets in a leaf node exceeds 
a distinct threshold, the leaf node is transformed to an inside 
node. Starting from the basis node, the subset perform finds 
the entire candidates contained in a transaction t aa follows. If 
we are at a leaf, we discover which of the itemsets in the leaf 
are contained in t and add references to them to the answer set. 
If we are at an inside node and we've got reached it with the 
aid of hashing the item i, we hash on each and every item that 
comes after i in t and recursively apply this process to the 
node in the corresponding bucket. For the foundation node, we 
hash on each item in t. To see why the subset operate returns 
the favored set of references, do not forget what happens at the 
root node. For any itemset c contained in transaction t, the first 
item of c have got to be in t. On the root, by way of hashing on 
each object in t, we be certain that we most effective ignore 
itemsets that begin with an item no longer in t. An identical 
arguments follow at decrease depths. The one additional 
aspect is that, given that the gadgets in any itemset are 
ordered, if we attain the current node with the aid of hashing 
the object i, we handiest ought to keep in mind the items in t 
that occur after i. 
 
 
 
 

2.2 Algorithm AprioriTid 
 

The AprioriTid algorithm, proven in figure 2, also 
makes use of the apriori-gen perform (given in part 2.1.1) to 
examine the candidate itemaets before the move starts. The 
interesting characteristic of this algorithm is that the database 
V isn't used for counting aid after the primary go. Instead, the 
set ck is used for this reason. Each and every member of the 
set ck is of the shape < TID, & >, the place each x1; is a 
possibly gigantic okay-object& present within the transaction 
with identifier TID. For ok = 1, ??R corresponds to the 
database V, despite the fact that conceptually each object  is 
replaced with the aid of the itemset (i. For ok > 1, ck is 
generated by the algorithm (step 10). The member of ck 
similar to transaction t is <t.TID, c E Ck IC contained in t)>. If 
a transaction does no longer incorporate any candidate Ic-
itemset, then ??Ok will no longer have an entry for this 
transaction. As a consequence, the quantity of entries in Ek 
could also be smaller than the quantity of transactions in the 
database, particularly for big values of k. Furthermore, for big 
values of Ic, each and every entry is also smaller than the 
corresponding transaction considering that very few 
candidates could also be contained within the transaction. 
However, for small values for L, every entry may be larger 
than the corresponding transaction considering an entry in Ck 
involves all candidate ok-itemsets contained in the transaction. 
In part 2.2.1, we give the information constructions used to put 
into effect the algorithm. See [5] for a proof of correctness and 
a discussion of buffer administration. 
 
---------------------------------------------------------------- 
1) L1 = {large l-item&s}; 
2) G = database V; 
3) for ( k = 2; Lkel # 8; k++ ) do begin 
4) Ck = apriori-gen(Lk-1); // New candidates 
5) Ek = B; 
6) forall entries t E Ek-1 do begin 
7) // determine candidate itemsets in Ck contained 
// in the transaction with identifier L.TID 
Ct = {c E Ck 1 (c - c[k]) E ‘kset-of-itemsets A 
(c - c[k - 11) E &set-of-itemsets}; 
8) forall candidates c E Ct do 
9) c.count++; 
10) if (C, # 0) then ck += < t.TID, Ct >; 
11) end 
12) Lk = {c E ck 1 c.count 2 minsup} 
13) end 
14) Answer = uk Lk; 
---------------------------------------------------------------- 

Figure 2: Algorithm AprioriTid 
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III. EFFICIENCY 
 

To determine the relative performance of the 
algorithms for locating massive sets, we carried out a number 
of experiments on an IBM RS/SOOO 530H computing device 
with a CPU clock fee of 33 MHz, sixty four MB of foremost 
reminiscence, and strolling AIX three.2. The info resided in 
the AIX file process and was stored on a 2GB SCSI three.5” 
drive, with measured sequential throughput of about 2 
MB/2nd. We first give an outline of the AIS [4] and SETM 
[13] algorithms in opposition to which we examine the 

efficiency of the Apriori and AprioriTid algorithms. We then 
describe the unreal datasets used in the efficiency analysis and 
exhibit the performance outcome. Sooner or later, we describe 
how the exceptional performance aspects of Apriori and 
AprioriTid may also be combined into an AprioriHybrid 
algorithm and demonstrate its scale-up houses. 

 
3.1 The AIS Algorithm 

 
Candidate itemsets are generated and counted on the 

fly because the database is scanned. After studying a 
transaction, it is decided which of the itemsets that had been 
found to be large within the prior pass are contained in this 
transaction. New candidate itemsets are generated by way of 
extending these gigantic itemsets with different gadgets within 
the transaction. A gigantic itemset 1 is increased with only 
these items which might be giant and arise later within the 
lexicographic ordering of gadgets than any of the objects in 1. 
The candidates generated from a transaction are delivered to 
the set of candidate itemsets maintained for the cross, or the 
counts of the corresponding entries are elevated in the event 
that they were created through an prior transaction. See [4] for 
additional important points of the AIS algorithm. 
 
3.2 The SETM Algorithm 

 
The SETM algorithm [13] was encouraged by the 

wish to make use of SQL to compute large itemsets. Like AIS, 
the SETM algorithm also generates candidates onthefly 
established on transactions read from the database. It as a 
result generates and counts every candidate itemset that the 
AIS algorithm generates. However, to use the common SQL 
become a member of operation for candidate iteration, SETM 
separates candidate iteration from counting. 

 
It saves a replica of the candidate itemset along side 

the TID of the generating transaction in a sequential structure. 
At the finish of the cross, the aid count of candidate itemsets 
depends upon sorting and aggregating this sequential 
constitution.  

 
SETM remembers the TIDs of the generating 

transactions with the candidate itemsets. To avert wanting a 
subset operation, it makes use of this information to verify the 
large itemsets contained in the transaction read. Zk s ??Okay 
and is obtained by using deleting these candidates that would 
not have minimum aid. Assuming that the database is sorted in 
TID order, SETM can with no trouble in finding the 
significant itemsets contained in a transaction within the 
subsequent go with the aid of sorting & on TID. In truth, it 
wants to visit each member of & simplest as soon as in the 
TID order, and the candidate generation can be performed 
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utilising the relational merge-join operation The drawback of 
this method is by and large due to the scale of candidate sets 
ck. For each and every candidate itemset, the candidate set 
now has as many entries as the quantity of transactions 
wherein the candidate itemset is gift. In addition, after we are 
able to rely the aid for candidate itemsets on the end of the 
move, i?Okay is within the mistaken order and needs to be 
sorted on itemsets. After counting and pruning out small 
candidate itemsets that should not have minimal help, the 
resulting set &! Wants yet another sort on TID before it may 
be used for generating candidates in the next go. Three.Three 
generation of artificial information We generated synthetic 
transactions to  valuate the efficiency of the algorithms over a 
giant variety of knowledge characteristics. These transactions 
mimic the transactions in the retailing atmosphere. Our 
mannequin of the “real” world is that individuals tend to 
purchase sets of objects together. 

 
 Each and every such set is potentially a maximal 

giant itemset. An instance of any such set possibly sheets, 
pillow case, comforter, and ruffles. Nonetheless, some people 
may purchase only probably the most objects from such a set. 
For illustration, some people might buy most effective sheets 
and pillow case, and some handiest sheets. A transaction may 
just include a couple of huge itemset. For instance, a client 
would place an order for a dress and jacket when ordering 
sheets and pillow circumstances, the place the dress and jacket 
together form an extra tremendous itemset. Transaction sizes 
are as a rule clustered round an average and a few transactions 
have many objects. Traditional sizes of gigantic itemsets are 
also clustered round an average, with a couple of big itemsets 
having a huge quantity of gadgets, To create a dataset, our 
artificial data iteration application takes the parameters shown 
in desk 2. 

 

 
 
We first check the size of the following transaction. 

The scale is picked from a Poisson distribution with mean p 
equal to ITI. Be aware that if each object is chosen with the 
identical probability p, and there are N objects, the anticipated 
number of gadgets in a transaction is given by means of a 
binomial distribution with parameters N and p, and is 
approximated by way of a Poisson distribution with imply Np. 

 
We then assign objects to the transaction. Each and 

every transaction is assigned a sequence of probably giant 

itemsets. If the giant itemset available does not slot in the 
transaction, the itemset is put within the transaction anyway in 
1/2 the circumstances, and the itemset is moved to the 
subsequent transaction the leisure of the circumstances. 

 
Giant itemsets are chosen from a collection I of such 

itemsets. The quantity of itemsets in ‘T is ready to ILj. There's 
an inverse relationship between IL1 and the typical help for 
potentially giant itemsets. An itemset in T is generated by 
means of first determining the dimension of the itemset from a 
Poisson distribution with imply ~1 equal to III. Items in the 
first itemset are chosen randomly. To mannequin the 
phenomenon that big itemsets more often than not have 
fashioned gadgets, some fraction of objects in subsequent 
itemsets are chosen from the earlier itemset generated. We use 
an exponentially disbursed random variable with mean equal 
to the correlation level to make a decision this fraction for 
each itemset. The rest objects are picked at random. Within 
the datasets used within the experiments, the correlation 
degree used to be set to zero.5. We ran some experiments with 
the correlation level set to zero.25 and zero.Seventy five but 
did not in finding a lot difference in the nature of our 
performance outcome. 

  

 
 
3.4 Relative Performance 

 
Figure 4 shows the execution times for the six 

synthetic datasets given in Table 3 for decreasing values of 
minimum support. As the minimum support decreases, the 
execution times of all the algorithms increase because of 
increases in the total number of candidate and large itemsets. 

 
For SETM, we have only plotted the execution times 

for the dataset T5.12.DlOOK in Figure 4. The execution times 
for SETM for the two datasets with an average transaction size 
of 10 are given in Table 4. We did not plot the execution times 
in Table 4 on the  corresponding graphs because they are too 
large compared to the execution times of the other algorithms. 
For the three datasets with transaction sizes of 20, SETM took 
too long to execute and we aborted those runs as the trends 
were clear. Clearly, Apriori beats SETM by more than an 
order of magnitude for large datasets. 
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Figure 4: Execution times 

 

 
 

IV. CONCLUSIONS AND FUTURE WORK 
 

We offered two new algorithms, Apriori and 
AprioriTid, for locating all big association rules between items 
in a tremendous database of transactions. We in comparison 
these algorithms to the earlier known algorithms, the AIS [4] 
and SETM [13] algo rithms. We offered experimental results, 
showing that the proposed algorithms continually outperform 
AIS and SETM. The performance hole elevated with the 
hindrance dimension, and ranged from a element of three for 
small issues to greater than an order of magnitude for huge 
issues. 

 
One of the main ingredients in our proposed protocol 

is a novel secure multi-party protocol for computing the union 
(or intersection) of private subsets that each of the interacting 
players hold. Another ingredient is a protocol that tests the 
inclusion of an element held by one player in a subset held by 
another. Those protocols exploit the fact that the underlying 
problem is of interest only when the number of players is 
greater than two. 
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