
IJSART - Volume 1 Issue 11 –NOVEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 49 www.ijsart.com

Rapid Algorithms for Secure Mining Principle Rules in
Secure Database

Kotha Bagavan1, Bullarao Domathoti2, Nageswara Rao Putta3

1, 2, 3 Department of CSE

1, 2, 3 Swetha Institute of Technology &Science, Tirupati , AP, INDIA.

Abstract- We don't forget the difficulty of discovering
organization principles between gadgets in a colossal
database of earnings transactions. We reward two new
algorithms for solving thii concern which can be essentially
exclusive from the identified algorithms. Empirical analysis
suggests that these algorithms outperform the recognized
algorithms through motives starting from three for small
problems to greater than an order of magnitude for massive
problems. We additionally show how the nice points of the 2
proposed algorithms may also be mixed right into a hybrid
algorithm, called AprioriHybrid. Scale-up experiments show
that AprioriHybrid scales linearly with the quantity of
transactions. AprioriHybrid additionally has fine scale-up
properties with admire to the transaction size and the number
of gadgets within the database.

Keywords- Privacy keeping knowledge Mining; disbursed
Computation; standard Itemsets; organization principles.

I. INTRODUCTION

Growth in bar-code technology has made it viable for
retail corporations to collect and store gigantic quantities of
income information, known as the basket knowledge. A
document in such data frequently includes the transaction date
and the objects bought in the transaction. Effective firms view
such databases as important portions of the marketing
infrastructure. They're desirous about instituting know-how-
driven marketing approaches, managed by way of database
technology, that enable marketers to enhance and implement
customized marketing applications and procedures [S]. The
difficulty of mining association principles over basket
knowledge was introduced in [4]. An instance of such a rule
maybe that 98% of purchasers that purchase Tires and auto
components additionally get car offerings achieved.
Discovering all such ideas is valuable for crossmarketing and
hooked up mailing functions. Other applications incorporate
catalog design, add-on earnings, store layout, and patron
segmentation situated on shopping patterns. The databases
worried in these applications are very big. It's relevant,
therefore, to have fast algorithms for this project.

The following is a proper statement of the drawback

[4]: Let Z =(i1,i2, . . . , im) be a suite of literals, known as
items. Let 2) be a suite of transactions, the place every

transaction T is a collection of objects such that T c Z. Related
to each transaction is a detailed identifier, known as its TID.
We say that a transaction T involves X, a suite of some
gadgets in Z, if X c T. In the absence of this type of relied on
third celebration, it is needed to plan a protocol that the avid
gamers can run on their possess so as to arrive at the required
output y. The sort of protocol is considered flawlessly
comfortable if no player can learn from his view of the
protocol greater than what he would have learnt in the
idealized setting where the computation is implemented via a
relied on 1/3 social gathering. Yao [32] was once the first to
advocate a popular answer for this concern within the case of
two avid gamers. Different ordinary solutions, for the multi-
occasion case, have been later proposed in [3], [5], [15].

In our obstacle, the inputs are the partial databases,

and the desired output is the list of association principles that
preserve in the unified database with help and self belief no
smaller than the given thresholds s and c, respectively. As the
above recounted generic solutions rely upon a description of
the perform f as a Boolean circuit, they can be applied most
effective to small inputs and features which can be realizable
through easy circuits. In additional complicated settings, such
as ours, other approaches are required for engaging in this
computation. In such instances, some relaxations of the
proposal of ideal safety probably inevitable when looking for
useful protocols, furnished that the excess understanding is
deemed benign (see examples of such protocols in e.G. [18],
[28], [29], [31], [34]).

Kantarcioglu and Clifton studied that drawback in

[18] and devised a protocol for its answer. The predominant a
part of the protocol is a sub-protocol for the cozy computation
of the union of personal subsets that are held by way of the
exceptional players. (The confidential subset of a given
participant, as we give an explanation for under, entails the
itemsets that are s-universal in his partial database.) That is
probably the most pricey part of the protocol and its
implementation relies upon cryptographic primitives
equivalent to commutative encryption, oblivious transfer, and
hash functions. This is also the one part in the protocol where
the players could extract from their view of the protocol
knowledge on other databases, beyond what's implied via the
ultimate output and their own enter.

IJSART - Volume 1 Issue 11 –NOVEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 50 www.ijsart.com

Even as such leakage of understanding renders the
protocol no longer perfectly relaxed, the perimeter of the
surplus information is explicitly bounded in [18] and it is
argued there that such knowledge leakage is innocuous,
whence acceptable from a useful point of view.

Herein we endorse an alternative protocol for the

comfortable computation of the union of personal subsets. The
proposed protocol improves upon that in [18] in phrases of
simplicity and effectivity as well as privateness. In unique, our
protocol does not depend upon commutative encryption and
oblivious transfer (what simplifies it vastly and contributes
towards much reduced communiqué and computational costs).
Even as our answer continues to be no longer flawlessly
comfy, it leaks excess expertise simplest to a small number
(three) of possible coalitions, unlike the protocol of [18] that
discloses know-how also to a couple single players.
Furthermore, we declare that the excess information 2 that our
protocol may leak is much less touchy than the surplus
knowledge leaked by the protocol of [18].

The protocol that we recommend here computes a

parameterized loved ones of services, which we call threshold
services, wherein the 2 extreme circumstances correspond to
the problems of computing the union and intersection of
personal subsets. These are in fact common-intent protocols
that can be utilized in different contexts as well. A different
challenge of secure multiparty computation that we solve here
as a part of our discussion is the set inclusion problem;
specifically, the obstacle where Alice holds a private subset of
some floor set, and Bob holds an element within the ground
set, they usually want to verify whether Bob’s detail is within
Alice’s subset, with out revealing to either of them expertise in
regards to the other occasion’s input beyond the above
described inclusion.

1.1 Main issue Decomposition and Paper institution

The challenge of discovering all association

principles can be decomposed into two subproblems [4]:

1. In finding all units of gadgets (itemseis) which have

transaction aid above minimal support. The support.
2. For an item set is the quantity of transactions that

incorporate the item set. Item sets with minimal help are
called massive itemsets, and all others small item sets. In
section 2, we give new algorithms, Apriori and
AprioriTid, for fixing this drawback. Use the gigantic
itemsets to generate the favored rules. Right here is a
straightforward algorithm for this mission. For each
gigantic itemset 1, to find all non-empty subsets of 1. For
every such subset a, output a rule of the form a => (l - a)

if the ratio of aid(l) to help(a) is at least minconf We need
to do not forget all subsets of 1 to generate principles with
multiple consequents. Due to lack of area, we do not talk
about this subproblem further, but refer the reader to [5]
for a speedy algorithm.

In part three, we exhibit the relative performance of
the proposed Apriori and AprioriTid algorithms towards the
AIS [4] and SETM [13] algorithms. To make the paper self-
contained, we incorporate an overview of the AIS and SETM
algorithms in this section. We also describe how the Apriori
and AprioriTid algorithms will also be combined into a hybrid
algorithm, AprioriHybrid, and exhibit the scale up homes of
this algorithm. We conclude by using declaring some related
open issues in section four.

II. DISCOVERING MASSIVE ITEMSETS

Algorithms for discovering big itemsets make a

couple of passes over the data. Within the first move, we rely
the aid of character objects and investigate which of them are
significant, i.E. Have minimumsupport. In every subsequent
move, we start with a seed set of itemsets located to be
enormous in the prior cross. We use this seed set for
producing new potentially huge itemsets, known as candidate
itemsets, and count the precise support for these candidate
itemsets during the go over the data. At the end of the cross,
we check which of the candidate itemsets are truly gigantic,
they usually grow to be the seed for the next cross. This
process continues unless no new massive itemsets are
determined.

The Apriori and AprioriTid algorithms we

recommend range essentially from the AIS [4] and SETM [13]
algorithms in phrases of which candidate itemsets are counted
in a move and in the way that these candidates are generated.
In each the AIS and SETM algorithms, candidate itemsets are
generated on-the-fly for the period of the go as data is being
read. Particularly, after studying a transaction, it's decided
which of the itemsets found enormous in the earlier cross are
present within thetransaction. New candidate itemsets are
generated via extending these colossal itemsets with different
objects in the transaction. However, as we will be able to see,
the disadvantage is that this results in unnecessarily producing
and counting too many candidate itemsets that prove to be
small.

The Apriori and AprioriTid algorithms generate the

candidate itemsets to depend in a go by means of utilising
handiest the itemsets located massive in the earlier cross -
without seeing that the transactions in the database. The
elemental instinct is that any subset of a large itemset have to

IJSART - Volume 1 Issue 11 –NOVEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 51 www.ijsart.com

be colossal. For that reason, the candidate itemsets having
okay objects can be generated via joining gigantic itemsets
having okay - 1 items, and deleting those who include any
subset that's not big. This approach outcome in iteration of a a
lot smaller number of candidate itemsets.

The AprioriTid algorithm has the further property

that the database is not used at inquisitive about counting the
aid of candidate itemsets after the primary go. Rather, an
encoding of the candidate itemsets used in the prior pass is
employed for this cause.

In later passes, the size of this encoding can emerge

as a lot smaller than the database, as a consequence saving a
lot reading effort. We will be able to give an explanation for
these elements in additional detail once we describe the
algorithms. Notation We assume that items in each transaction
are stored sorted of their lexicographic order. It is simple to
adapt these algorithms to the case the place the database 2, is
stored normalized and each database file is a <TID, item>
pair, where TID is the identifier of the corresponding
transaction.

We call the quantity of items in an itemset its

measurement, and phone an itemset of measurement okay a k-
itemset. Items within an itemset are saved in lexicographic
order. We use the notation c[l] . C[2] C[k] to represent a
kitemset c along with items c[l], c[2], . . .C[k], where

c[l] < c[2] < . . . < c[k]. If c = X + Y and Y

is an m-itemset, we also name Y an m-eziension of X. Related
to each itemset is a count subject to retailer the aid for this
itemset. The count discipline is initialized to zero when the
itemset is first created.

 We summarize in table 1 the notation used within the
algorithms. The set i?K is utilized by AprioriTid and can be
further discussed after we describe this algorithm.

1.3 A running example

Let D be a database of N = 18 itemsets over a set of L
= 5 items, A = {1, 2, 3, 4, 5}. It is partitioned between M = 3
players, and the corresponding partial databases are:

D1 = {12, 12345, 124, 1245, 14, 145, 235, 24, 24}
D2 = {1234, 134, 23, 234, 2345}
D3 = {1234, 124, 134, 23} .

For example, D1 includes N1 = 9 transactions, the
third of which (in lexicographic order) consists of 3 items —
1, 2 and 4. Setting s = 1/3, an itemset is s-frequent in D if it is
supported by at least 6 = sN of its transactions. In this case,

F1s = {1, 2, 3, 4}
F2s = {12, 14, 23, 24, 34}
F3s = {124}
F4s = F5s = � ,
and Fs = F1s∪F2 s∪F3
s . For example, the itemset 34 is indeed globally s-frequent
since it is contained in 7 transactions of D. However, it is
locally s-frequent only in D2 and D3. 3 In the first round of
the FDM algorithm, the three players compute the sets C1,m s
of all 1-itemsets that are locally frequent at their partial
databases:

C1,1 s = {1, 2, 4, 5} ,
C1,2 s = {1, 2, 3, 4} ,
C1,3 s = {1, 2, 3, 4} .

Hence, C1s = {1, 2, 3, 4, 5}. Consequently, all 1-itemsets have
to be checked for being globally frequent; that check reveals
that the subset of globally s-frequent 1-itemsets is F1s = {1, 2,
3, 4}.In the second round, the candidate itemsets are:

C2,1s = {12, 14, 24}
C2,2s = {13, 14, 23, 24, 34}
C2,3s = {12, 13, 14, 23, 24, 34} .
(Note that 15, 25, 45 are locally s-frequent at D1 but they are
not included in C2,1 s since 5 was already found to be globally
infrequent.) Hence, C2 s = {12, 13, 14, 23, 24, 34}.

Then, after veryfing global frequency, we are left with F2 s =
{12, 14, 23, 24, 34}.

In the third round, the candidate itemsets are:
C3,1s = {124} , C3,2s = {234} , C3,3s = {124} .
So, C3s = {124, 234} and, then, F3s = {124}. There are no
more frequent itemsets.

--
1) L1 = {large 1-itemsets};
2) for (k = 2; Lk-1 # 0; k++) do begin

IJSART - Volume 1 Issue 11 –NOVEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 52 www.ijsart.com

3) ck = apIiO&geu(&l); // New candidates
4) forall transactions 1 E 2) do begin
5) C* = S&S&(&, t); // Candidatea COntahd in t
6) forall candidates c E Cr do
7) c.count++;
8) end
9) Lk = {C E ck 1 C.count 2 minsup}
10) end
11) Answer = Uk Lk;
--

Figure 1: Algorithm Apriori

2.1.2 Subset operate

Candidate itemsets Ck are stored in a hash-tree. A
node of the hash-tree either includes a list of itemsets (a leaf
node) or a hash desk (an interior node). In an inside node,
every bucket of the hash desk aspects to one more node. The
foundation of the hash-tree is outlined to be at depth 1. An
inside node at depth d features to nodes at depth d+ 1. Itemsets
are stored in the leaves. Once we add an itemset c, we start
from the root and go down the tree unless we attain a leaf. At
an interior node at depth d, we come to a decision which
department to follow by way of applying a hash perform to the
dth item of the itemset. All nodes are initially created as leaf
nodes.

 When the quantity of itemsets in a leaf node exceeds
a distinct threshold, the leaf node is transformed to an inside
node. Starting from the basis node, the subset perform finds
the entire candidates contained in a transaction t aa follows. If
we are at a leaf, we discover which of the itemsets in the leaf
are contained in t and add references to them to the answer set.
If we are at an inside node and we've got reached it with the
aid of hashing the item i, we hash on each and every item that
comes after i in t and recursively apply this process to the
node in the corresponding bucket. For the foundation node, we
hash on each item in t. To see why the subset operate returns
the favored set of references, do not forget what happens at the
root node. For any itemset c contained in transaction t, the first
item of c have got to be in t. On the root, by way of hashing on
each object in t, we be certain that we most effective ignore
itemsets that begin with an item no longer in t. An identical
arguments follow at decrease depths. The one additional
aspect is that, given that the gadgets in any itemset are
ordered, if we attain the current node with the aid of hashing
the object i, we handiest ought to keep in mind the items in t
that occur after i.

2.2 Algorithm AprioriTid

The AprioriTid algorithm, proven in figure 2, also
makes use of the apriori-gen perform (given in part 2.1.1) to
examine the candidate itemaets before the move starts. The
interesting characteristic of this algorithm is that the database
V isn't used for counting aid after the primary go. Instead, the
set ck is used for this reason. Each and every member of the
set ck is of the shape < TID, & >, the place each x1; is a
possibly gigantic okay-object& present within the transaction
with identifier TID. For ok = 1, ??R corresponds to the
database V, despite the fact that conceptually each object is
replaced with the aid of the itemset (i. For ok > 1, ck is
generated by the algorithm (step 10). The member of ck
similar to transaction t is <t.TID, c E Ck IC contained in t)>. If
a transaction does no longer incorporate any candidate Ic-
itemset, then ??Ok will no longer have an entry for this
transaction. As a consequence, the quantity of entries in Ek
could also be smaller than the quantity of transactions in the
database, particularly for big values of k. Furthermore, for big
values of Ic, each and every entry is also smaller than the
corresponding transaction considering that very few
candidates could also be contained within the transaction.
However, for small values for L, every entry may be larger
than the corresponding transaction considering an entry in Ck
involves all candidate ok-itemsets contained in the transaction.
In part 2.2.1, we give the information constructions used to put
into effect the algorithm. See [5] for a proof of correctness and
a discussion of buffer administration.

--
1) L1 = {large l-item&s};
2) G = database V;
3) for (k = 2; Lkel # 8; k++) do begin
4) Ck = apriori-gen(Lk-1); // New candidates
5) Ek = B;
6) forall entries t E Ek-1 do begin
7) // determine candidate itemsets in Ck contained
// in the transaction with identifier L.TID
Ct = {c E Ck 1 (c - c[k]) E ‘kset-of-itemsets A
(c - c[k - 11) E &set-of-itemsets};
8) forall candidates c E Ct do
9) c.count++;
10) if (C, # 0) then ck += < t.TID, Ct >;
11) end
12) Lk = {c E ck 1 c.count 2 minsup}
13) end
14) Answer = uk Lk;
--

Figure 2: Algorithm AprioriTid

IJSART - Volume 1 Issue 11 –NOVEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 53 www.ijsart.com

III. EFFICIENCY

To determine the relative performance of the
algorithms for locating massive sets, we carried out a number
of experiments on an IBM RS/SOOO 530H computing device
with a CPU clock fee of 33 MHz, sixty four MB of foremost
reminiscence, and strolling AIX three.2. The info resided in
the AIX file process and was stored on a 2GB SCSI three.5”
drive, with measured sequential throughput of about 2
MB/2nd. We first give an outline of the AIS [4] and SETM
[13] algorithms in opposition to which we examine the

efficiency of the Apriori and AprioriTid algorithms. We then
describe the unreal datasets used in the efficiency analysis and
exhibit the performance outcome. Sooner or later, we describe
how the exceptional performance aspects of Apriori and
AprioriTid may also be combined into an AprioriHybrid
algorithm and demonstrate its scale-up houses.

3.1 The AIS Algorithm

Candidate itemsets are generated and counted on the

fly because the database is scanned. After studying a
transaction, it is decided which of the itemsets that had been
found to be large within the prior pass are contained in this
transaction. New candidate itemsets are generated by way of
extending these gigantic itemsets with different gadgets within
the transaction. A gigantic itemset 1 is increased with only
these items which might be giant and arise later within the
lexicographic ordering of gadgets than any of the objects in 1.
The candidates generated from a transaction are delivered to
the set of candidate itemsets maintained for the cross, or the
counts of the corresponding entries are elevated in the event
that they were created through an prior transaction. See [4] for
additional important points of the AIS algorithm.

3.2 The SETM Algorithm

The SETM algorithm [13] was encouraged by the

wish to make use of SQL to compute large itemsets. Like AIS,
the SETM algorithm also generates candidates onthefly
established on transactions read from the database. It as a
result generates and counts every candidate itemset that the
AIS algorithm generates. However, to use the common SQL
become a member of operation for candidate iteration, SETM
separates candidate iteration from counting.

It saves a replica of the candidate itemset along side

the TID of the generating transaction in a sequential structure.
At the finish of the cross, the aid count of candidate itemsets
depends upon sorting and aggregating this sequential
constitution.

SETM remembers the TIDs of the generating

transactions with the candidate itemsets. To avert wanting a
subset operation, it makes use of this information to verify the
large itemsets contained in the transaction read. Zk s ??Okay
and is obtained by using deleting these candidates that would
not have minimum aid. Assuming that the database is sorted in
TID order, SETM can with no trouble in finding the
significant itemsets contained in a transaction within the
subsequent go with the aid of sorting & on TID. In truth, it
wants to visit each member of & simplest as soon as in the
TID order, and the candidate generation can be performed

IJSART - Volume 1 Issue 11 –NOVEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 54 www.ijsart.com

utilising the relational merge-join operation The drawback of
this method is by and large due to the scale of candidate sets
ck. For each and every candidate itemset, the candidate set
now has as many entries as the quantity of transactions
wherein the candidate itemset is gift. In addition, after we are
able to rely the aid for candidate itemsets on the end of the
move, i?Okay is within the mistaken order and needs to be
sorted on itemsets. After counting and pruning out small
candidate itemsets that should not have minimal help, the
resulting set &! Wants yet another sort on TID before it may
be used for generating candidates in the next go. Three.Three
generation of artificial information We generated synthetic
transactions to valuate the efficiency of the algorithms over a
giant variety of knowledge characteristics. These transactions
mimic the transactions in the retailing atmosphere. Our
mannequin of the “real” world is that individuals tend to
purchase sets of objects together.

 Each and every such set is potentially a maximal

giant itemset. An instance of any such set possibly sheets,
pillow case, comforter, and ruffles. Nonetheless, some people
may purchase only probably the most objects from such a set.
For illustration, some people might buy most effective sheets
and pillow case, and some handiest sheets. A transaction may
just include a couple of huge itemset. For instance, a client
would place an order for a dress and jacket when ordering
sheets and pillow circumstances, the place the dress and jacket
together form an extra tremendous itemset. Transaction sizes
are as a rule clustered round an average and a few transactions
have many objects. Traditional sizes of gigantic itemsets are
also clustered round an average, with a couple of big itemsets
having a huge quantity of gadgets, To create a dataset, our
artificial data iteration application takes the parameters shown
in desk 2.

We first check the size of the following transaction.

The scale is picked from a Poisson distribution with mean p
equal to ITI. Be aware that if each object is chosen with the
identical probability p, and there are N objects, the anticipated
number of gadgets in a transaction is given by means of a
binomial distribution with parameters N and p, and is
approximated by way of a Poisson distribution with imply Np.

We then assign objects to the transaction. Each and

every transaction is assigned a sequence of probably giant

itemsets. If the giant itemset available does not slot in the
transaction, the itemset is put within the transaction anyway in
1/2 the circumstances, and the itemset is moved to the
subsequent transaction the leisure of the circumstances.

Giant itemsets are chosen from a collection I of such

itemsets. The quantity of itemsets in ‘T is ready to ILj. There's
an inverse relationship between IL1 and the typical help for
potentially giant itemsets. An itemset in T is generated by
means of first determining the dimension of the itemset from a
Poisson distribution with imply ~1 equal to III. Items in the
first itemset are chosen randomly. To mannequin the
phenomenon that big itemsets more often than not have
fashioned gadgets, some fraction of objects in subsequent
itemsets are chosen from the earlier itemset generated. We use
an exponentially disbursed random variable with mean equal
to the correlation level to make a decision this fraction for
each itemset. The rest objects are picked at random. Within
the datasets used within the experiments, the correlation
degree used to be set to zero.5. We ran some experiments with
the correlation level set to zero.25 and zero.Seventy five but
did not in finding a lot difference in the nature of our
performance outcome.

3.4 Relative Performance

Figure 4 shows the execution times for the six

synthetic datasets given in Table 3 for decreasing values of
minimum support. As the minimum support decreases, the
execution times of all the algorithms increase because of
increases in the total number of candidate and large itemsets.

For SETM, we have only plotted the execution times

for the dataset T5.12.DlOOK in Figure 4. The execution times
for SETM for the two datasets with an average transaction size
of 10 are given in Table 4. We did not plot the execution times
in Table 4 on the corresponding graphs because they are too
large compared to the execution times of the other algorithms.
For the three datasets with transaction sizes of 20, SETM took
too long to execute and we aborted those runs as the trends
were clear. Clearly, Apriori beats SETM by more than an
order of magnitude for large datasets.

IJSART - Volume 1 Issue 11 –NOVEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 55 www.ijsart.com

Figure 4: Execution times

IV. CONCLUSIONS AND FUTURE WORK

We offered two new algorithms, Apriori and
AprioriTid, for locating all big association rules between items
in a tremendous database of transactions. We in comparison
these algorithms to the earlier known algorithms, the AIS [4]
and SETM [13] algo rithms. We offered experimental results,
showing that the proposed algorithms continually outperform
AIS and SETM. The performance hole elevated with the
hindrance dimension, and ranged from a element of three for
small issues to greater than an order of magnitude for huge
issues.

One of the main ingredients in our proposed protocol

is a novel secure multi-party protocol for computing the union
(or intersection) of private subsets that each of the interacting
players hold. Another ingredient is a protocol that tests the
inclusion of an element held by one player in a subset held by
another. Those protocols exploit the fact that the underlying
problem is of interest only when the number of players is
greater than two.

REFRENCES

[1] D. S. Associates. The new direct marketing. Business
One Irwin, Illinois, 1990.

[2] R. Brachman et al. Integrated support for data
archeology. In AAAI-93 Workshop on Knowledge
Discovery in Databases, July 1993.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees. Wadsworth,
Belmont, 1984.

[4] P. Cheeseman et al. Autoclass: A Bayesian classification

system. In 5th Int’l Conf. on Machine Learning. Morgan
Kaufman, June 1988.

[5] D. H. Fisher. Knowledge acquisition via incremental

conceptual clustering. Machine Learning, 2(2), 1987.

[6] J. Han, Y. Cai, and N. Cercone. Knowledge discovery in

databases: An attribute oriented approach. In Proc. of the
VLDB Conference, pages 547-559, Vancouver, British
Columbia, Canada, 1992.

[7] M. Holsheimer and A. Siebes. Data mining: The search

for knowledge in databases. Technical Report CS-
R9406, CWI, Netherlands, 1994.

[8] M. Ho&ma and A. Swami. Set-oriented mining of

association rules. Research Report RJ 9567, IBM
Almaden Research Center, San Jose, California, October
1993.

[9] R. Krishnamurthy and T. Imielinski. Practitioner

problems in need of database research: Research
directions in knowledge discovery. SIGMOD RECORD,
20(3):76-78, September 1991.

[10] P. Langley, H. Simon, G. Bradshaw, and J. Zytkow.

Scientific Discovery: Computational Explorations of the
Creative Process. MIT Press, 1987.

[11] H. Mannila and K.-J. Raiha. Dependency inference. In

Proc. of the VLDB Conference, pages 155-158,
Brighton, England, 1987.

[12] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient

algorithms for discovering association rules. In KDD-94:
AAAI Workshop on Knowledge Discovery in
Databases, July 1994.

[13] S. Muggleton and C. Feng. Efficient induction of logic

programs. In S. Muggleton, editor, Inductive Logic
Programming. Academic Press, 1992.

[14] J. Pearl. Probabilistic reasoning in intelligent systems:

Networks of plausible inference, 1992.

[15] G. Piatestsky-Shapiro. Discovery, analysis, and

presentation of strong rules. In G. Piatestskyhapiro,

IJSART - Volume 1 Issue 11 –NOVEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 56 www.ijsart.com

editor, Knowledge Discovey in Databases. AAAI/MIT
Press, 1991.

[16] G. Piatestsky-Shapiro, editor. Knowledge Discovey in

Databases. AAAI/MIT Press, 1991.

[17] J. R. Quinlan. C4.5: Programs for Machine Learning.

Morgan Kaufman, 1993.

