
IJSART - Volume 1 Issue 9 –SEPTEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 78 www.ijsart.com

A Review paper on Social-Network-Aided Video-on-
Demand for peer to peer Network

Ms.Virangana S. Waghchaure1, Prof. Mr.Viresh Chapte2

1, 2 Department of Computer Engineering
1, 2 Dr.D.Y.Patil School of Engineering & Technology, Lohegaon Pune

Abstract- In order to cost-effectively serve a large number of
users, video-on-demand (VoD) content providers often place
distributed servers close to user pools. These servers have
heterogeneous streaming and storage capacities, and
collaboratively share contents with each other. A critical
challenge is how to optimize movie storage and retrieval so as
to minimize system deployment cost due to server streaming,
server storage, and network transmission between servers.
Using a general and comprehensive cost model, we propose a
novel VoD architecture using linear source coding. All the
movies are source-encoded once at the repository, by coding k
source symbols of movie m to n (m) source-coded symbols.
These coded symbols are then distributed to the servers. We
optimize n (m) and the number of symbols to retrieve from
each server for a request. Our solution approaches
asymptotically to global optimum as k increases. We show that
even when k is low (say, 30), near optimality can be achieved.
Furthermore, the solutions on n (m) , symbol distribution and
retrieval can be efficiently computed with a linear program
(LP). Through extensive simulation, our algorithm is ;shown
to achieve substantially the lowest cost, outperforming
traditional and state-of-the-art heuristics by a significantly
wide margin.

Keywords- Peer-to-peer (P2P) P2P networks, social networks,
Distributed video-on-demand (VoD) cloud.

I. INTRODUCTION

Distributed video-on-demand (VoD) has emerged as
an important and lucrative cloud service. In order to provide
such service in a cost-effective manner scalable to large
number of users, a content provider often deploys distributed
servers close to user pools. These servers cooperatively store
and retrieve movies depending on their popularity. It minimize
the total deployment cost by optimizing movie storage and
retrieval in the servers.

Fig.1 show Video on demand network with

distributed Data server. The network consists of a central
Server (repository) storing all the movies and data centers, is
also name as proxy servers

Network has central server/repository containing all

videos as a whole. Repositories are linked with proxy servers

which contains parts of the movies users are directly
connected to

Proxy servers. The total concept depends on using the

uploading bandwidth of all the users in the network.

How it works??

The user will select the video that he wants to
download. The user will get a Meta file which will contains
the information about the video. Meta file

Contains all the information of the file including its
size and the other users that are downloading the video. User
will automatically get joined to the network. If there is no
server downloading the video then user will get joined directly
to the server.

Fig 1. Distributed servers’ architecture for Video on demand

service.

How video will get downloaded?

After downloading the metafile server will divide the
video into chunks. Large files are broken into pieces of size
between 64 KB and 1 MB. The chunks are decided on basis of
size. Now other users that has downloaded the particular
chunk can upload to other users. If the chunk is not available
with any user then it is directly downloaded to server. If any
user uploading content gets disconnected directly from
network then the user downloading that part gets directly
connected to server in order to avoid time delay.

IJSART - Volume 1 Issue 9 –SEPTEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 79 www.ijsart.com

After download is complete, it will merge all the
video parts. And then download will be completed. The
transfer speed is affected by a number of variables, including
the type of protocol, the amount of traffic on the server and the
number of other computers that are downloading the file. If
the file is both large and popular, the demands on the server
are great, and the download will be slow.The transfer is
handled by a protocol (a set of rules), such as FTP (File
Transfer Protocol) or HTTP (Hypertext Transfer Protocol).
This will solve the problem of leeching.

Pieces and Sub-Pieces A piece is broken into sub-pieces ...
typically 16KB in size. Until a piece is assembled, only
download the sub-pieces of that piece only. This policy lets
pieces assemble quickly

Pipelining When transferring data over TCP, always have
several requests pending at once, to avoid a delay between
pieces being sent. At any point in time, some number,
typically 5, are requested simultaneously. . Every time a piece
or a sub-piece arrives, a new request is sent out.

Piece Selection The order in which pieces are selected by
different users is critical for good performance .If an
inefficient policy is used, then peers may end up in a situation
where each has all identical set of easily available pieces, and
none of the missing ones.If the original seed is prematurely
taken down, then the file is directly connected to server.

Linear source coding is commonly applied for constrained
optimization.
The constraint are limited resources.The main elements
for source coding are
1. Variables
2. Objective functions
3. Constraints
4. Variable bounds.
In short it is planning with linear models.

Contributions have three-folds:

 General and comprehensive consideration of bandwidth

and storage for video-on-demand:

Video on demand considers the inter-dependency
among server bandwidth, server storage and network traffic in
cost optimization.Now video on demanding network capturing
all these parameters. Their cost model is hence more general
and comprehensive.

 Bucket-filling: A novel movie distribution and retrieval

algorithm with source coding:

Novel video on-demand network using linear source
coding. A requestfor a movie can be satisfied by filling a
bucket of size ksymbols. It termed as bucket-filling, is
remarkablySimple and effective for movie distribution and
retrieval.

 Asymptotically optimal performance for distributed

video on-demand:All the movies are source-encoded
once at the repository, by coding k source symbols of
movie m to n (m) source-coded symbols. These coded
symbols are then distributed to the servers. They optimize
n (m) and the number of symbols to retrieve from each
server for a request. The solution approaches
asymptotically to global optimum as k increases. We
show that even when k is low (say, 30), near optimality
can be achieved. Furthermore, the solutions on n (m),
symbol distribution and retrieval can be efficiently
computed with a linear program (LP). Through extensive
simulation & comparison bucket filling algorithm is
achieve substantially the lowest cost, outperforming
traditional and state-of-the-art heuristics by a significantly
wide margin

We study previous work as follows. Many Heuristics

had proposed for movie replication and retrieval [1–6]. These
algorithms are generally sub-optimal andtheir performance
bounds are not easy to analyze or derive. Incontrast, bucket-
filling achieves asymptotically optimal performance by
increasing the parameter k. For the work studying The cost
issue of Video on demand D [1, 4, 7–9], they often have not
sufficiently considered the more general case with network
access cost, storage constraint and streaming cost of the
servers. Our model captures all these elements, leading to a
more complete, realistic and practical formulation.

II. BUCKET-FILLING ALGORITHM

2.1. System description

A movie m is source-coded only once at the
repository by taking k source symbols to generate n (m) ≥ k
equal-sized coded ones. As a user has to collect k symbols in
order to decode the video, k is a tunable system parameter
depending on the level of coding delay and complexity the
provider is willing to tolerate. Out of the n(m)coded symbols,
the repository stores any of the k coded symbols, and
distributes the remainder without replication to the proxy
servers. In the network, movies are distributed and retrieved
according to the following

Coded Symbol Distribution: The repository encodes the
movies once and then distributes the coded symbols of the

IJSART - Volume 1 Issue 9 –SEPTEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 80 www.ijsart.com

movies to each server. The symbol distribution needs to be
done only upon major system changes, e.g., upon the
introduction and removal of movies or change in movie
popularity
Which affect movie storage in a major way.

Coded Symbol Retrieval: A movie request carries a “bucket”
of size k symbols. If its home server has not stored, and hence
cannot supply, enough k symbols to serve the request, it
“pulls” the missing ones from the other proxies or central
servers. Through this bucket-filling mechanism,the servers
cooperatively store and supply symbols on-demand with each
other to fulfill requests.

We compare bucket-filling with the following traditionaland
recent movie replication schemes:

• Random, where each server randomly stores movies

withoutconsidering their popularity. This is a simple
storagestrategy.

• MPF (Most Popular First), where each server stores
themost popular movies. This is a greedy strategy, but
doesnot take advantage of cooperative replication.

• Local Greedy [1], which divides the movies into three
categories,those popular ones which all servers store
(full replication), those medium popular ones which only
oneproxy server store (single copy), and those unpopular
ones

Which only the repository stores (no copy). By

formulating an LP problem, it seeks to minimize network cost.
As Local Greedy assumes homogeneous access cost, we set its
access cost to be equal to the average access cost between
servers in our network.

Form all the comparison schemes, upon a miss
request, the home server v chooses an available server u which
has the requested content with probability proportional to
1/Cuv. It isa reasonable, simple and effective strategy because
the server with lower access cost has higher chance to be
chosen. Withthis probabilistic approach, a server with low
access cost is not always selected so as to avoid congestion

III. CONCLUSION

In this work, we have studied optimal movie
distribution and retrieval to minimize deployment cost for
video-on-demand (VoD) with distributed servers. The
deployment cost captures the costs of server streaming, server
storage and network transmission cost. We have studied a
VoD networkusing source coding which asymptotically
achieves exactly optimum depending on a coding parameter.

Movies are distributed and retrieved efficiently using “bucket
filling” algorithm. . We are study extensive compare the
performance of bucketfilling with other traditional and state-
of-the-art schemes. And results show that bucket-filling
achieves its close optimality with substantially much lower
cost, and outperforms the other schemes by a wide margin
(multiple times in many cases, and more than 100% in most
cases).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions

of [1] Zhangyu Chang and S.-H. Gary Chanfortheir work on
Bucket-Filling: An asymptotically optimal video-on-demand
network with source codingThank to all for theirguidance,
help and timely support .It gives me great pleasure and
immense satisfaction to present this paper.

REFERENCES

[1] Zhangyu Chang and S.-H. Gary Chan, Senior Member,

IEEE Bucket-Filling: An Asymptotically Optimal
Video-on-Demand Network WithSource CodingIEEE
TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO.
5, MAY 2015

[2] S. Borst, V. Gupta, and A.Walid, “Distributed caching

algorithms for content distribution networks,” in
Proceedings IEEE INFOCOM 2010, Mar. 2010, pp. 1–
9.

[3] Zhuolin Xu ; Ning Liu“Optimizing video-on-demand

with source coding”Chan, S.-H.G. Dept. of Comput.
Sci. & Eng., Hong Kong Univ. of Sci. & Technol.,
Kowloon,China .Multimedia and Expo (ICME), 2013
IEEE International Conference on15-19 July 2013

[4] C. Huang, J. Li, and K. W. Ross, “Can internet video-

on-demand be profitable?,” in Proc. Conf. Appl.,
Technol., Archit., Protocols Comput. Commun. New
York, NY, USA, 2007, pp. 133–144.

[5] S.-H. G. Chan and F. Tobagi, “Distributed servers

architecture for networked Video services,” IEEE/ACM
Trans. Netw., vol. 9, no. 2, pp.125–136, Apr. 2001.

[6] D. Wu, J. He, Y. Zeng, X. Hei, and Y. Wen, “Towards

optimal deployment of cloud-assisted video distribution
services,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 23, no. 10, pp. 1717–1728, Oct. 2013.

[7] D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured

cloud bandwidth auto-scaling for video-on-demand

IJSART - Volume 1 Issue 9 –SEPTEMBER 2015 ISSN [ONLINE]: 2395-1052

Page | 81 www.ijsart.com

applications,” in Proc. IEEE INFOCOM, Mar. 2012,
pp. 460–468.

[8] Y. He, I. Lee, and L. Guan, “Distributed throughput

maximization in P2P VoD applications,” IEEE Trans.
Multimedia, vol. 11, no. 3, pp. 509–522, Apr. 2009.

[9] S.-H. Gary Chan, “Operation and cost optimization of

adistributed servers architecture for on-demand video
services,”IEEE Communications Letters, vol. 5, no. 9,
pp.384–386, Sept. 2001.

[10] Yung R. Choe, Derek L. Schuff, Jagadeesh M. Dyaberi,

and Vijay S. Pai, “Improving VoD server efficiency
with bittorrent,” in Proceedings of conference on
Multimedia (MULTIMEDIA ’07), New York, NY,
USA, 2007, pp. 117–126, ACM.

