On N(k)-Quasi Einstein Manifold

Tarini Kotamkar¹, Dr.Brajendra Tiwari²

Department of Mathematics ^{1, 2} RKDF University, Bhopal

Abstract- In this N(k)-Quasi Einstein Manifolds (N(k)-(QE)n)are introduced and we have studied an N(k)-quasi Einstein manifold satisfying $R(\tilde{s}, X).\tilde{A}$, where \tilde{A} is the pseudoprojective curvature.

Keywords- k-nullity distribution, Killing vector field, N(k)-quasi Einstein manifold, Pseudo-projective curvature tensor, Quasi-Einstein manifold

I. INTRODUCTION

A Quasi-Einstein manifold is precisely a simple and natural generalization of a Einstein manifold. A quasi-Einstein manifold is defined as a non -flat Riemannian manifold (M_n ,g) (n>2) [2] if the Ricci tensor S of type (0,2) is not identically zero and satisfies the condition

(1.1) S(X,Y) = a g(X,Y) + b (X) (Y), $X,Y \in TM$

where b = 0, *a* and *b* are smooth functions on the manifold and is a not vanishing of 1-form such that its Ricci operator Q satisfies

(1.2) $Q=aI+bn\bigotimes \xi$

for some smooth functions a and b 0, where is a non-zero 1-form such that,

(1.3)
$$g(X, \xi) = (X); g(\xi, \xi) = (\xi) = 1$$

for the associated vector field . The generator of the manifold is the unit vector field . Where a and b are scalars and are known as the associated scalars.

 $(QE)_n$ is the notation for an n-dimensional manifold of this kind. If b=0 and a=n then this reduces to the wellknown Einstein manifold. This suggest the name given to this manifold as 'Quasi-Einstein Manifold'.

In an n-dimensional quasi-Einstein manifold the Ricci tensor has precisely two distinct eigen values a and a + b, where multiplicity of a is (n -1) and a + b is simple. A natural example of a quasi-Einstein manifold is proper - Einstein contact metric manifold ([1], [3]).

In 2007 Mukut Mani Tripathi and Jeong-Sik Kim, it is proved that conformally flat quasi Einstein manifolds are Certain N(k)-quasi Einstein manifolds.

Definition 1. Let (Mn, g) be a non flat Riemannian manifold. If the ricci tensor S of (Mn, g) isnon zero and satisfies S(X, Y) = ag(X, Y) + bA(X)B(Y) + cB(X)A(Y),

where a, b and c are smooth functions and A and B are non zero 1-forms such that g(X,U) = A(X) and g(X, V) = B(X) for all vector fields X, and U and V being the orthogonal unit vectorfields called generators of the manifold belong to N(k), then we say that (Mn, g) is a N(k)-quasi Einstein manifold and is denoted by N(k)–(QE)n. [11]

M.M. Tripathi and J.S. Kim [9] in 2007 studied a quasi-Einstein manifold whose generator [§] belongs to the knullity distribution N(k) and called such a manifold as N(k)quasi Einstein manifold. Conformally flat quasi-Einstein manifolds are certain N(k)-quasi Einstein manifolds is proved in [9]. In [8] the derivation conditions $R(\xi,X)$. R = 0 and $R(\xi,X)$. ,X).S = 0 are studied where R and S denotes the curvature and Ricci tensor, respectively. Cihan Ozgur and M.M. Tripathi [5] continued the study of the N(k)-quasi Einstein manifold. The derivation conditions $Z(\xi,X)$. R = 0 and $Z(\xi,X)$,X).Z = 0 on N(k)-quasi Einstein manifold were studied in [5] by Ozgur, C., Tripathi, M. M, where Z is the concircular curvature tensor. Moreover, in [5], for an N(k)-quasi Einstein manifold it was proved that $k = \frac{l+l}{l-1}$ C. Ozgur [4], in 2008, studied the condition R.A = 0 for an N(k)-quasi Einstein manifold, where A denotes the projective curvature tensor and some physical examples of N(k)-quasi Einstein manifolds are given. Again, in 2008, C. Ozgur and Sibel Sular [6], studied N(k)-quasi Einstein manifold satisfying $R(\xi,X)$.A = 0and $R(\xi,X)$,X). $\tilde{A} = 0$, where A and \tilde{A} represent the Weyl conformal curvature tensor and the quasi-conformal curvature tensor, respectively. This paper is a continuation of previous studies.

The paper is organized as follows after introduction in Section II we discussed N(k)-quasi Einstein manifold. In Section III, we studied N(k)-quasi Einstein manifold satisfying R(ξ ,X). $\tilde{A} = 0$ and Section IV deals with aRicci symmetric quasi-Einstein manifold with constant associated scalars.

II. N(k)-QUASI EINSTEIN MANIFOLD

The k-nullity distribution N(k) of a Riemannian manifold Mn is defined by[8]

N(k) : p $\quad Np(k)$ = {Z εTpM | $R(X,\ Y,Z)$ = k(g(Y,Z)X - g(X,Z)Y

for all X, Y ϵ TM, where k is some smooth function.

The notion of N(k)-quasi Einstein manifold was introduced by Tripathi and Kim [9]. If the generator of a quasi Einstein manifold belongs to the *k* nullity distribution N(k) for some smooth function *k*, then this quasi Einstein manifold is called N(k)-quasi Einstein manifold [9]. The N(k)quasi Einstein manifolds have also been studied by Ozgur [4], Ozgur and Sular [6],Ozgur andTripathi [5].

If the generator ξ of the quasi-Einstein manifold M_n belongs to the k-nullity distribution N(k) for some smooth function k, then M_n is called N(k)-quasi Einstein manifold [9].

On N(k)-quasi Einstein manifold, we have [9]

(2.1)
$$R(Y,Z) = k((Z)Y - (Y)Z).$$

The above equation is equivalent to

(2.2)
$$R(\xi, Y)Z = k(g(Y,Z) \xi - (Z)Y).$$

In particular, the above two equations imply that

(2.3)
$$(R(Y,Z) \xi) = 0:$$

Moreover, it is known [5] that

In an n-dimensional N(k)-quasi Einstein manifold, it follows that

$$(2.4) k = \frac{\omega + b}{\omega - 1}$$

Theorem 2.1. An n-dimensional conformally flat quasi Einstein manifold is an $N\left(\frac{\Box + \Box}{\Box - 1}\right)$ -quasi Einstein manifold.

Thus, we see that n-dimensional conformally flat quasi Einstein manifolds are natural examples of N(k)-quasi Einstein manifolds. It is well-known that in a 3-dimensional Riemannian manifold (M^3 ,g) the conformal curvature tensor vanishes. [16]

Corollary 2.2. Each 3-dimensional quasi Einstein manifold is an $N(\frac{a+b}{a})$ quasi Einstein manifold.

Let (M_n, g) be an N(k)-quasi Einstein manifold. Then, we have

(2.5)
$$R(Y,Z) = k ((Z) Y - (Y)Z).$$

The equation (2.7) is equivalent to

(2.6)
$$R(\xi Y)Z = k (g (Y,Z) \xi - (Z) Y).$$

In particular, the above equation implies that

(2.7)
$$R(\xi Y) = k ((Y \xi - Y))$$

From (2.7) and (2.8), we have

(2.8)
$$(R(Y,Z) = 0,$$

(2.9)
$$(R(\xi Y)Z) = k (g (Y,Z) - (Y) (Z)) .$$

III. N(k)-QUASI EINSTEIN MANIFOLD SATISFYING $R(\varepsilon, X)$. $\tilde{A} = 0$.

In 2002, B. Prasad [7] introduced the notion of a pseudo-projective curvature tensor. The pseudo-projective curvature tensor \tilde{A} on a manifold M_n of dimension n is defined as follows.

$$\hat{A}(X,Y)Z = \propto R(X,Y)Z + \beta [S(Y,Z)X - S(X,Z)Y]$$
(3.1) $-\frac{\tau}{n} [\frac{\alpha}{n-1} + \beta] [g(Y,Z)X - g(X,Z)Y],$

where \mathbb{X} and β are the constants such that \mathbb{X} , $\beta \neq 0$, R is the curvature tensor and S is the Ricci tensor. It is obvious that if $\mathbb{X} = 1$ and $\beta = -\frac{1}{n-1}$, then the pseudo-projective curvature tensor reduces to a projective curvature tensor. Let, N(k)-quasi Einstein manifold satisfy the condition

$$(3.2) R(\varepsilon, Y). \tilde{A} = 0.$$

This implies

$$0 = \mathbf{R}(\boldsymbol{\xi}, \mathbf{Y}) \tilde{\mathbf{A}} (\mathbf{U}, \mathbf{V})\mathbf{Z} - \tilde{\mathbf{A}} (\mathbf{R}(\boldsymbol{\xi}, \mathbf{Y})\mathbf{U}, \mathbf{V})\mathbf{Z}$$

(3.3)
$$- \tilde{\mathbf{A}} (\mathbf{U}, \mathbf{R}(\boldsymbol{\xi}, \mathbf{Y})\mathbf{V})\mathbf{Z} - \tilde{\mathbf{A}} (\mathbf{U}, \mathbf{V})\mathbf{R}(\boldsymbol{\xi}, \mathbf{Y})\mathbf{Z}.$$

Taking inner product of the equation (3.3) with ξ , we get

$$\begin{split} 0 &= g(R(\car{\xi}\ ,\ Y\)\ \tilde{A}\ (U,\ V\)Z\ ,\ \car{\xi}\) - g(\tilde{A}\ (R(\car{\xi}\ ,\ Y\)\)U,\ V\)Z\ , \\ \car{\xi}\) - g(\tilde{A}\ (U,R(\car{\xi}\ ,\ Y\)V\)Z\ ,\ \car{\xi}\) - g(\tilde{A}\ (U,\ V\)R(\car{\xi}\ ,\ Y\)Z\ ,\ \car{\xi}\). \end{split}$$

By virtue of (2.2), the above equation gives

$$\begin{split} 0 &= k \; \tilde{A} \; (U,V,Z, \; Y \;) - \; (\; \tilde{A} \; (U, \; V \;) Z) \; (\; Y \;) \\ &- \; g(Y,U) \; (\; \tilde{A} \; (\; \xi \;, \; V \;) Z) + \; (U) \; (\; \tilde{A} \; (Y, \; V \;) Z) \\ (3.4) &- \; g(Y, \; V \;) \; (\; \tilde{A} \; (U; \; \xi \;) Z) + \; (\; V \;) \; (\; \tilde{A} \; (U, \; Y \;) Z) \\ &- \; g(Y,Z) \; (\; \tilde{A} \; (U; \; V \;) \; \xi) + \; (Z) \; (\; \tilde{A} \; (U, \; V \;) Y \;)], \end{split}$$

where \tilde{A} (U, V,Z, Y) = g(\tilde{A} (U,V)Z, Y).

Now, from (1.1), (2.1), (3.1), we have

(3.5)
$$\P(\tilde{A}(X, Y)Z) = \tilde{A}[g(Y,Z)(X) - g(X,Z)(Y)].$$

where $\mathbf{A} = \begin{bmatrix} \mathbf{a} \mathbf{k} - \frac{\mathbf{r}}{n} \left(\frac{\mathbf{u}}{n-1} + \boldsymbol{\beta} \right) - \boldsymbol{\beta} \boldsymbol{\alpha} \end{bmatrix}$, which, by 2.1, reduces to

 $\lambda = b$ (\rightarrow) n . From (3.6), it follows that

(3.6) $(\tilde{A}(X, Y)) = 0,$

(3.7)
$$(\tilde{A}(\xi, Y)Z) = \lambda[g(Y,Z) - (Y)(Z)]$$

And

(3.8)
$$(\tilde{A}(X;\xi)Z) = \lambda[(X)(Z) - g(X,Z)].$$

Using (3.6), (3.7), (3.8) in (3.5), we obtain

 $(3.9) 0 = k [\tilde{A} (U, V, Z, Y) - \lambda(g(Y, U)g(V, Z) - g(Y, V)g(U, Z)],$

which, due to the equation (3.1), yields

(3.10) $0 = k[\mathbb{K}R(X, Y, Z, W) + \beta fS(Y, Z)g(X, W) - S(X, Z)g(Y, W)g - \{\frac{\beta}{n}(\frac{w}{n-1} + \beta) + \beta\}$

 $\lambda \} g (g(\mathbf{Y}, \mathbf{Z})g(\mathbf{X}, \mathbf{W}) - g(\mathbf{X}, \mathbf{Z})g(\mathbf{Y}, \mathbf{W}))].$

Contracting above equation (3.11) over X and W, we get

(3.11)
$$0 = k[S(Y,Z) - \mu g(Y,Z)],$$

where

$$\mu = \frac{1}{\alpha + (n-1)\beta} \left[(n-1) + \frac{n}{n} \{ (\alpha + (n-1)\beta) \} \right].$$

Since the manifold under consideration is not an Einstein manifold, therefore it follows that k = 0.

Conversely, if k = 0, then in view of equation (2:2), we have $R(\boldsymbol{\xi}, X) = 0$,

which gives $R(\xi,X)$. $\tilde{A} = 0$. Thus, we have the following theorem

IV. RICCI-SYMMETRIC QUASI-EINSTEIN MANIFOLD

In this section we consider a quasi-Einstein manifold, whose associated scalars a and b are constant.

Definition 4.1. A Riemannian manifold M_n is called a Riccisymmetric manifold if its Ricci tensor S satisfies the condition

(4.1)
$$(\nabla_{\mathbf{X}} \mathbf{S})(\mathbf{Y}, \mathbf{Z}) = 0,$$

where \mathbf{N} is the Levi-Civita connection of the Riemannian metric g.

Definition 4.2. *The Ricci tensor of Riemannian manifold is said to be cyclic parallel if*

(4.2)
$$(\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(X,Y) = 0.$$

Let M_n be a quasi-Einstein manifold, whose associated scalars are constant, then by differentiating (1.1) covariantly with respect to Levi-Civita connection we get

(4.3)
$$(\nabla_{X}S)(Y,Z) = b[(\nabla_{X})(Y)(Z) + (\nabla_{X})(Z)(Y)].$$

If Ricci tensor of M_n is symmetric, then the equation (4.3) implies that

$$b((\nabla_X)(Y) (Z) + (\nabla_X)(Z) (Y)) = 0;$$

which on putting $Z = \xi$ gives,

(4.4)
$$(\nabla_X)(Y) = 0 \text{ as } b \neq 0:$$

Putting Y=X in equation (4:4), we find

$$(\nabla_X \eta)(X) = 0$$

or equivalently

$$g(\nabla_X \xi, X) = 0,$$

and from (4:4), we also have

(4.5)
$$(\nabla_X)(Y) + (\nabla_Y)(X) = 0.$$

Therefore, we have the following two theorems.

Theorem 4.1. If the quasi-Einstein manifold Mn with constant associated scalars is Ricci symmetric, then its generator ξ satisfies $g(\nabla_X \xi, X) = 0$.

Theorem 4.2. If the quasi-Einstein manifold Mn with constant associated scalars is Ricci symmetric, then its generator ξ is a Killing vector field.

Next, from (4:3), we get

$$\begin{split} & \nu(X,Y,Z)(\nabla_X S)(Y,Z) = b[(\nabla_X)(Y)(Z) + \\ & (\nabla_X)(Z)(Y) + (\nabla_Y)(Z)(X) + (\nabla_Y)(X)(Z) \\ & (4.6) + (\nabla_Z)(X)(Y) + (\nabla_X)(Y)(X)], \end{split}$$

where $\mathcal{P}(X,Y,Z)$ denotes a cyclic sum with respect to X, Y and Z.

i.e.
$$\nabla(X,Y,Z)(\nabla_X S)(Y,Z) = (\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(X,Y).$$

If a generator of the quasi-Einstein manifold is a Killing vector, then we have the equation (4:5), which on using in (4:6), gives

$$(\nabla_{\mathbf{X}}\mathbf{S})(\mathbf{Y},\mathbf{Z}) + (\nabla_{\mathbf{Y}}\mathbf{S})(\mathbf{Z},\mathbf{X}) + (\nabla_{\mathbf{Z}}\mathbf{S})(\mathbf{X},\mathbf{Y}) = 0.$$

Thus, we may have the following theorem:

Theorem 4.3. If the generator of the quasi-Einstein manifold M_n with constant associated scalars is Killing, then its Ricci tensor is cyclic parallel.

ACKNOWLEDGMENT

The author would like to thank the anonymous referee for his comments that helped us improve this article.

REFERENCES

- Blair, D. E., Riemannian geometry of contact and sympletic manifolds. Progress in Mathematics 203, Boston, MA.: Birkhauser Boston, Inc., 2002.
- [2] Chaki, M. C., Maity, R. K., On quasi Einstein manifolds. Publ. Math. Debrecen 57, no. 3-4 (2000), 297-306.
- [3] Okumura, M., Some remarks on space with a certain contact structure. Tohoku Math J. 14 (1962), 135-145.

- [4] Ozgur, C., N(k)-quasi Einstein manifolds satisfying certain conditions. Chaos, Solitons and Fractals 38 (2008), 1373-1377.
- [5] Ozgur, C., Tripathi, M. M., On the concircular curvature tensor of an N(k)-quasi Einstein manifold. Math. Pannon., 18(1) 2007, 95-100.
- [6] Ozgur, C., Sular, S., On N(k)-quasi Einstein manifold satisfying certain conditions, B.J.G.A, 13(2)(2008), 74-79.
- [7] Prasad, B., A pseudo-projective curvature tensor on a Riemannian manifold. Bull. Cal. Math. Soc., 94(3)(2002), 163-167.
- [8] Tanno, S., Ricci curvatures of contact Riemannian manifolds. Tohoku Math. J., 40 (1988), 441-448.
- [9] Tripathi, M. M., Kim, J. S., On N(k)-quasi Einstein manifold. Commun. Korean Math. Soc., 22(3) (2007), 411-417.Received by the editors April 16, 2009
- [10] R.N.Sing, M.K.Pandey, D.Gautam ,on N(k)-quasi Einstein manifold NOVI SAD J. MATH VOL. 40, No. 2,2010,23-28
- [11] M.C.Chaki and R.K.Maity, On Quasi Einstein manifolds, publ. math. Debrecen, 57(2000)297-306.
- [12] B.Y.Chen, Geometry of Submanifolds, Marcel Dekker, Inc., New York, 1973.
- [13] B.Y.Chen and K. Yano, hypersurfaces of a conformally flat space, Tensor, N.S., 26 (1972)318-322.
- [14] U.C.De and Gopal Chandra Ghosh, On quasi Einstein manifolds, Periodica Mathematica Hungarica, 48(1-2)(2004) 223-231.
- [15] U.C.De and Gopal Chandra Ghosh, On generalized quasi Einstein manifolds, Kyungpookmath. J., 44(2004) 607-615.
- [16] Mukut Mani tripathi and Jeong-Sik Kim, On N(k)quasi Einstein manifolds, Commun.Korean Math. Soc. 22(3) (2007),411-417.
- [17] R. N. Singh, M. K. Pandey, D. Gautam, on N(k)quasi Einstein manifold, Novi Sad J. Math.Vol. 40,

No. 2, 2010, 23- Ozg[•]ur, C. and Sular, S., On N(k)quasi Einstein manifolds satisfying certain conditions, Bolkan J. Geom. Appl., **13(2)** (2008), 74– 79.

[18] Tripathi, M. M. and Kim, J. S., On N(k)-quasi Einstein manifolds, Commun. Korean Math. Soc., 22(3) (2007), 411–417.