On N(k)-Quasi Einstein Manifold Einstein

Tarini Kotamkar¹ , Dr.Brajendra Tiwari² Tarini

Department of Mathematics ^{1, 2} RKDF University, Bhopal

Abstract- In this N(k)-Quasi Einstein Manifolds (N(k)-(QE)n) are introduced and we have studied an N(k)-quasi Einstein Abstract- In this N(k)-Quasi Einstein Manifolds (N(k)-(QE)n)
are introduced and we have studied an N(k)-quasi Einstein is
manifold satisfying R(*§ X).*à , where \tilde{A} is the pseudo- Ce *projective curvature.*

Keywords- k-nullity distribution, Killing vector field, N(k)-quasi **Keywords-** k-nullity distribution, Killing vector field, N(k)-quasi If
Einstein manifold, Pseudo-projective curvature tensor, Quasi- = Einstein manifold

I. INTRODUCTION

A Quasi-Einstein manifold is precisely a simple and natural generalization of a Einstein manifold. A quasi-Einstein manifold is defined as a non-flat Riemannian manifold (M_n) (g) (n>2) [2] if the Ricci tensor S of type $(0,2)$ is not identically zero and satisfies the condition a generalization of a Einstein manifold. A quasi-Einstein unit vector

if if old is defined as a non -flat Riemannian manifold $(M_n \t N(k))$, the
 $(n>2)$ [2] if the Ricci tensor S of type (0,2) is not manifold

it ically zero

 (1.1) S(X,Y) = a g(X,Y) + b (X) (Y) , $X, Y \in TM$

where $b \quad 0$, *a* and *b* are smooth functions on the manifold and is a not vanishing of 1-form such that its Ricci operator Q satisfies

 (1.2) Q= a*I* + bn $\otimes \xi$

 $Q = aI + bn \otimes \xi$ [5

for some smooth functions a and b = 0, where π is a π , X non-zero 1-form such that,

(1.3)
$$
g(X, \xi) = (X); g(\xi, \xi) = (\xi) = 1
$$

for the associated vector field . The generator of the manifold is the unit vector field . Where *a* and *b* are scalars and are known as the associated scalars.

 (QE) _n is the notation for an n-dimensional manifold of this kind. If $b=0$ and $a=\mathbb{R}$ then this reduces to the wellknown Einstein manifold. This suggest the name given to this manifold as 'Quasi-Einstein Manifold'. for the associated vector field . The generator of the manifold,
manifold is the unit vector field . Where *a* and *b* are scalars some phy
and are known as the associated scalars. $(N(k)-qua)$.
 $(N(k)-qua)$
(QE)_n is the notati

In an n-dimensional quasi-Einstein manifold the Ricci tensor has precisely two distinct eigen values a and $a +$ b, where multiplicity of a is $(n-1)$ and $a + b$ is simple. A natural example of a quasi-Einstein manifold is proper -Einstein contact metric manifold ([1], [3]).

In 2007 Mukut Mani Tripathi and Jeong-Sik Kim, it is proved that conformally flat quasi Einstein manifolds are Certain N(k)-quasi Einstein manifolds.

Definition 1. *Let (Mn, g) be a non flat Riemannian manifold. If the ricci tensor S of (Mn, g) isnon zero and satisfies S(X, Y)* $= ag(X, Y) + bA(X)B(Y) + cB(X)A(Y),$

where a, b and c are smooth functions and A and B are non zero 1-forms such that $g(X, U) = A(X)$ and $g(X, V) =$ B(X) for all vector fields X, and U and V being the orthogonal unit vectorfields called generators of the manifold belong to $N(k)$, then we say that (Mn, g) is a $N(k)$ -quasi Einstein manifold and is denoted by N(k)–(QE)n. [11]

M.M. Tripathi and J.S. Kim [9] in 2007 studied a quasi-Einstein manifold whose generator ϵ belongs to the knullity distribution $N(k)$ and called such a manifold as $N(k)$ quasi Einstein manifold. Conformally flat quasi-Einstein manifolds are certain N(k)-quasi Einstein manifolds is proved in [9]. In [8] the derivation conditions $R(\xi, X)$. R = 0 and R(ξ (X) , $S = 0$ are studied where R and S denotes the curvature and Ricci tensor, respectively. Cihan Ozgur and M.M. Tripathi [5] continued the study of the N(k)-quasi Einstein manifold. The derivation conditions $Z(\overline{\cdot},X)$. R = 0and $Z(\overline{\cdot})$ (X) , $Z = 0$ on N(k)-quasi Einstein manifold were studied in [5] by Ozgur, C., Tripathi, M. M, where Z is the concircular curvature tensor. Moreover, in [5], for an N(k)-quasi Einstein curvature tensor. Moreover, in [5], for an N(k)-quasi Einstein
manifold it was proved that $k = \frac{m+1}{m+1}$ C. Ozgur [4], in 2008, studied the condition $R.A = 0$ for an N(k)-quasi Einstein manifold, where A denotes the projective curvature tensor and some physical examples of N(k)-quasi Einstein manifolds are given. Again, in 2008, C. Ozgur and Sibel Sular [6], studied N(k)-quasi Einstein manifold satisfying R(ϵ ,X).A = 0and R(ϵ ,X). $\tilde{A} = 0$, where A and \tilde{A} represent the Weyl conformal curvature tensor and the quasi-conformal curvature tensor, respectively. This paper is a continuation of previous studies. NS is a more interesting to the proved conformally interest manifold as because the system of t manifolds are certain N(k)-quasi Einstein manifolds is proved
in [9]. In [8] the derivation conditions R(ξ ,X).R = 0 and R(ξ ,X).S = 0 are studied where R and S denotes the curvature
and Ricci tensor, respectively. Ci studied the condition R.A = 0 for an N(k)-quasi Eins
manifold, where A denotes the projective curvature tensor
some physical examples of N(k)-quasi Einstein manifolds
given. Again, in 2008, C. Ozgur and Sibel Sular [6], s and b are smooth functions on the manifold and

manifolds are certain N(k)-quasi Einstein manifolds

inshing of 1-form such that its Ricci operator Q in [9]. In [8] the derivation conditions R(g,X),R = 0

and Ricci tensor

The paper is organized as follows after introduction in Section II we discussed N(k)-quasi Einstein manifold. In Section III, we studied N(k)-quasi Einstein manifold satisfying $R(E, X)$. $\tilde{A} = 0$ and Section IV deals with a Ricci symmetric quasi-Einstein manifold with constant associated scalars. paper is a continuation of previous studies
er is organized as follows after introducti
discussed $N(k)$ -quasi Einstein manifold.

II. N(k)-QUASI EINSTEIN MANIFOLD MANIFOLD

The k-nullity distribution N(k) of a Riemannian manifold Mn is defined by[8]

N(k) : p → Np(k) = {Z ∈TpM | R(X, Y,Z) = k(g(Y,Z)X - $g(X,Z)Y$
for all X, Y ∈TM, where k is some smooth function. The equ $g(X,Z)Y$

for all X, Y ϵ TM, where k is some smooth function.

The notion of $N(k)$ -quasi Einstein manifold was introduced by Tripathi and Kim [9]. If the generator of a quasi Einstein manifold belongs to the k nullity distribution \mathbf{f} \mathbf{h} $N(k)$ for some smooth function k , then this quasi Einstein manifold is called $N(k)$ -quasi Einstein manifold [9]. The $N(k)$ quasi Einstein manifolds have also been studied by Ozgur [4], Ozgur and Sular [6],Ozgur andTripathi [5]. *N(k)* for some smooth function *k*, then this quasi Einstein manifold is called *N(k)*-quasi Einstein manifold [9]. The *N(k)*-quasi Einstein manifolds have also been studied by Ozgur [4], Ozgur and Sular [6], Ozgur and II. Niko Qualitation MANIFOLD (Consider a matrix of θ and θ differential θ and θ an

If the generator ϵ of the quasi-Einstein manifold M_n ϵ belongs to the k-nullity distribution N(k) for some smooth function k, then M_n is called N(k)-quasi Einstein manifold [9]. belongs to the k-nullity distribution N(k) for some smooth
function k, then M_n is called N(k)-quasi Einstein manifold [9].
On N(k)-quasi Einstein manifold, we have [9]
(2.1) $R(Y,Z) = k((Z)Y - (Y)Z)$.

On N(k)-quasi Einstein manifold, we have [9]

(2.1)
$$
R(Y,Z) = k(. (Z)Y - (Y)Z).
$$

The above equation is equivalent to

 $R(\xi, Y)Z = k(g(Y,Z))\xi - (Z)Y$.

In particular, the above two equations imply that

(2.3) $(R(Y, Z) \xi) = 0$:

Moreover, it is known [5] that

$$
(2.3) \t\t (R(Y,Z) \t S) = 0:
$$

Moreover, it is known [5] that

In an n-dimensional N(k)-quasi Einstein manifold, it follows that In an n-dimensional N(k)-quasi Einstein manifold, it follows

that

(2.4) $k = \frac{\mu + \bar{m}}{n-1}$ L
 Theorem 2.1. An n-dimensional conformally flat quasi (3)

$$
(2.4) \qquad k = \frac{a + b}{n - 1}
$$

Einstein manifold is an N () -quasi Einstein manifold.

Thus, we see that n-dimensional conformally flat quasi Einstein manifolds are natural examples of N(k)-quasi Einstein manifolds. It is well-known that in a 3-dimensional Riemannian manifold (M^3, g) the conformal curvature tensor vanishes. [16]

Corollary 2.2. *Each* 3*-dimensional quasi Einstein manifold is an* $N(\frac{\Box + \Box}{\Box})$ *quasi Einstein manifold.*

Let (M_n, g) be an $N(k)$ -quasi Einstein manifold. Then, we have

(2.5)
$$
R(Y,Z) = k (Z) Y - (Y)Z
$$
.

The equation (2.7) is equivalent to

(2.6)
$$
R(\xi Y)Z = k (g(Y,Z) \xi - (Z) Y).
$$

In particular, the above equation implies that

(2.7)
$$
R(\xi Y) = k (Y \xi - Y).
$$

From (2.7) and (2.8) , we have

$$
(2.8) \t\t (R(Y,Z) \leq 0,
$$

(2.9)
$$
(R(\xi Y)Z) = k (g(Y,Z) - (Y) (Z)).
$$

III. N(k)-QUASI EINSTEIN MANIFOLD SATISFYING $R(\varepsilon, X)$. $\tilde{A} = 0$.

In 2002, B. Prasad [7] introduced the notion of a pseudo-projective curvature tensor. The pseudo-projective curvature tensor \hat{A} on a manifold M_n of dimension n is defined as follows.

$$
\hat{A}(X,Y)Z = \mathbb{R}R(X,Y)Z + \beta[S(Y,Z)X - S(X,Z)Y]
$$
\n(3.1)
$$
-\frac{z}{n} \left[\frac{z}{n-1} + \beta \right] [g(Y,Z)X - g(X,Z)Y],
$$

where α and β are the constants such that α , $\beta \neq 0$, R is the curvature tensor and S is the Ricci tensor. It is obvious R is the curvature tensor and S is the Ricci tensor. It is obvious
that if $\pi = 1$ and $\beta = -\frac{1}{\pi - 1}$, then the pseudo-projective curvature tensor reduces to a projective curvature tensor. Let, $N(k)$ -quasi Einstein manifold satisfy the condition Corollary 2.2. Each 3-dimensional quasi Einstein manifold.

Let (M_m, g) be an $N(k)$ -quasi Einstein manifold.

Let (M_m, g) be an $N(k)$ -quasi Einstein manifold.

(2.5) $R(Y,Z) \xi = k$ ($(Z) Y - (Y)Z$).

The equation (2.7) is equival

$$
R(\varepsilon_{\nu} Y).\tilde{A} = 0.
$$

This implies

$$
0 = R(\xi, Y) \tilde{A}(U, V)Z - \tilde{A}(R(\xi, Y)U, V)Z
$$

(3.3)
$$
- \tilde{A}(U, R(\xi, Y)V)Z - \tilde{A}(U, V)R(\xi, Y)Z.
$$

Taking inner product of the equation (3.3) with ξ , we get

 $0 = g(R(\xi, Y) \tilde{A}(U, V)Z, \xi) - g(\tilde{A}(R(\xi, Y) U, V)Z,$) - g(\widetilde{A} (U,R(ξ , Y)V)Z, ξ) - g(\widetilde{A} (U, V)R(ξ , Y)Z, ξ). = g(R(ξ , Y) \tilde{A} (U, V)Z, ξ) - g(\tilde{A} (R(ξ , Y)U, V

() - g(\tilde{A} (U,R(ξ , Y)V)Z, ξ) - g(\tilde{A} (U, V)R(ξ , Y)Z,

y virtue of (2.2), the above equation gives
 $0 = k \tilde{A}$ (U,V,Z, Y) - (\tilde{A}

By virtue of (2.2), the above equation gives

 $0 = k \tilde{A}$ (U,V,Z, Y)- $(\tilde{A}$ (U, V)Z) (Y) $-g(Y,U) (\tilde{A} (\xi, V)Z) + (U) (\tilde{A} (Y, V)Z)$ $(3.4) - g(Y, V) (\tilde{A}(U; \bar{E})Z) + (V) (\tilde{A}(U, Y)Z)$ $- g(Y, V)$ ($\hat{A} (U; E)Z$) + (V) ($\hat{A} (U, Y)Z$)
 $- g(Y, Z)$ ($\tilde{A} (U; V) E$) + (Z) ($\tilde{A} (U, V)Y$)], (3.8) $\frac{1}{2}$, $\frac{1}{$

where $\widetilde{A}(U, V, Z, Y) = g(\widetilde{A}(U, V)Z, Y)$.

Now, from (1.1), (2.1), (3.1), we have
(3.5)
$$
\mathbf{q}(\tilde{A}(X, Y)Z) = \mathbf{A} [g(Y, Z) (X) - g(X, Z) (Y)].
$$

where $\vec{A} = [\vec{X} \times \vec{A} \cdot \vec{B}]$, which, by 2.1, reduces who met
 $(\vec{A} = \vec{b} \cdot \vec{A})$
 $\vec{A} = \vec{b} \cdot \vec{A}$
 $\vec{A} = \vec{b} \cdot \vec{A}$
 $\vec{A} = \vec{A} \cdot \vec{A} \cdot \vec{A}$
 $\vec{A} = \vec{A} \cdot \vec{A} \cdot \vec{A}$
 $\vec{A} = \vec{A} \cdot \vec{A} \cdot \vec{A} \cdot \vec$ to

 $\lambda = b \left(\frac{a - b}{n} \right)$

n . From (3.6), it follows that

(3.6) $(\tilde{A} (X, Y) \xi) = 0,$

(3.7)
$$
(\tilde{A}(\xi, Y)Z) = \lambda[g(Y,Z) - (Y \setminus (Z)]
$$

And

(3.8)
$$
(\tilde{A}(X;\xi)Z) = \lambda[(X)(Z) - g(X,Z)].
$$

Using (3.6), (3.7), (3.8) in (3.5), we obtain

 (3.9) 0 = k [\tilde{A} (U, V,Z, Y) - $\lambda(g(Y,U)g(V,Z)$ - g(Y, V)g(U,Z)],

which, due to the equation (3.1) , yields

(3.10) $0 = k[\ \text{R}(X, Y, Z, W) + \ \text{S} \ \text{f}S(Y, Z)g(X, W) - \ \text{S} \ \text{f$ $S(X,Z)g(Y,W)g -\left(-\frac{1}{m}(\frac{1}{m+1}+\beta)+\right)$

 λ }g (g(Y,Z)g(X,W) - g(X,Z)g(Y,W))].

Contracting above equation (3.11) over X and W, we get

(3.11)
$$
0 = k[S(Y,Z) - \mu g(Y,Z)],
$$

where

$$
\mu = \frac{1}{n + (n-1)\beta} \left[\sqrt{(n-1)} + \frac{r}{n} \left(\sqrt{(n-1)\beta} \right) \right].
$$

Since the manifold under consideration is not an Einstein manifold, therefore it follows that $k = 0$.

Conversely, if $k = 0$, then in view of equation (2:2), we have $R(\xi, X) = 0$,

which gives $R(\xi, X)$ $\tilde{A} = 0$. Thus, we have the following theorem following theorem

IV. RICCI-SYMMETRIC QUASI-EINSTEIN MANIFOLD

In this section we consider a quasi-Einstein manifold, sociated scalars a and b are constant. whose associated scalars a and b are constant.

Definition 4.1. *A Riemannian manifold Mⁿ is called a Ricci- ⁿ called symmetric manifold if its Ricci tensor S satisfies the condition the*

$$
(4.1) \qquad (\nabla_X S)(Y,Z) = 0,
$$

where ∇ is the Levi-Civita connection of the Riemannian metric g.

Definition 4.2. *The Ricci tensor of Riemannian manifold is* said to be cyclic parallel if *said to be cyclic parallel if*

(4.2)
$$
(\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(X,Y) = 0.
$$

Let M_n be a quasi-Einstein manifold, whose associated scalars (4.2) $(\mathbf{V}_X \mathbf{S})(\mathbf{Y}, \mathbf{Z}) + (\mathbf{V}_Y \mathbf{S})(\mathbf{Z}, \mathbf{X}) + (\mathbf{V}_Z \mathbf{S})(\mathbf{X}, \mathbf{Y}) = 0.$
Let \mathbf{M}_n be a quasi-Einstein manifold, whose associated scalars are constant, then by differentiating (1.1) covariantly with respect to Levi-Civita connection we get *calla manifold* M_n *is called*
 cs Ricci tensor *S* satisfies the co

S)(Y,Z) = 0,
 *c*Civita connection of the Rie
 cci tensor of Riemannian manifold, whose associated
 clifferentiating (1.1) covarian

different

(4.3)
$$
(\nabla_X S)(Y,Z) = b[(\nabla_X)(Y) (Z) + (\nabla_X)(Z) (Y)].
$$

If Ricci tensor of M_n is symmetric, then the equation

lies that
 $b((\nabla_X)(Y) (Z) + (\nabla_X)(Z) (Y)) = 0;$ (4.3) implies that

$$
b((\nabla_X)(Y) (Z) + (\nabla_X)(Z) (Y)) = 0;
$$

which on putting $Z = \xi$ gives,

which on putting
$$
Z = \xi
$$
 gives,
(4.4) $(\nabla_X)(Y) = 0$ as $b = 0$:
Putting Y=X in equation (4:4), we find

$$
(\nabla_{X} \eta)(X) = 0
$$

or equivalently

$$
g(\nabla_X \xi, X) = 0,
$$

and from (4:4), we also have $(\nabla_X \eta)(X) =$
equivalently
g($\nabla_X \xi, X$) = 0,
d from (4:4), we also h

(4.5)
$$
(\nabla_X)(Y) + (\nabla_Y)(X) = 0.
$$

Therefore, we have the following two theorems.

Theorem 4.1. If the quasi-Einstein manifold Mn with constant associated scalars is Ricci symmetric, then its generator ξ satisfies $g(\nabla_X \xi, X) = 0$. ie, we have the following two theorems.
 n 4.1. If the quasi-Einstein manifold Mn with constant

d scalars is Ricci symmetric, then its generator ξ
 $g(\nabla_x \xi, X) = 0$.
 n 4.2. If the quasi-Einstein manifold Mn with

Theorem 4.2. If the quasi-Einstein manifold Mn with constant associated scalars is Ricci symmetric, then its generator ξ is a Killing vector field.

Next, from (4:3), we get

Killing vector field.

Next, from (4:3), we get
 $\mu(X,Y,Z)$ ($\nabla_X S$)(Y,Z) = b[(∇_X)(Y) (Z) + $(\nabla_X)(Z) (Y) + (\nabla_Y)(Z) (X) + (\nabla_Y)(X) (Z)$
 $(4.6) + (\nabla_Z)(X) (Y) + (\nabla_X)(Y) (X)$ (4.6) $+ (\nabla_Z)(X)(Y) + (\nabla_X)(Y)(X)$

where $\sigma(X,Y,Z)$ denotes a cyclic sum with respect to X, Y [8] and Z.

i.e.
$$
\mathbb{P}(X,Y,Z)(\nabla_X S)(Y,Z) = (\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) +
$$

\n $(\nabla_Z S)(X,Y).$

If a generator of the quasi-Einstein manifold is a If a generator of the quasi-Einstein manifold is a
Killing vector, then we have the equation (4:5), which on $\frac{101}{100}$ using in $(4:6)$, gives

$$
(\nabla_X S)(Y,Z)+(\nabla_Y S)(Z,X)+(\nabla_Z S)(X,Y)=0.
$$

Thus, we may have the following theorem:

Theorem 4.3. If the generator of the quasi-Einstein manifold M_n with constant associated scalars is Killing, then its Ricci^[12] tensor is cyclic parallel. $O(Y,Z) + (V_Y S)(Z,X) + (V_Z S)(X, Y)$
we may have the following theorem:
em 4.3. If the generator of the quasi-E
th constant associated scalars is Killin

ACKNOWLEDGMENT ACKNOWLEDGMENT

The author would like to thank the anonymous referee for his comments that helped us improve this article.

REFERENCES

- [1] Blair, D. E., Riemannian geometry of contact and sympletic manifolds. Progress in Mathematics 203, [15] Boston, MA.: Birkhauser Boston, Inc., 2002.
- [2] Chaki, M. C., Maity, R. K., On quasi Einstein manifolds. Publ. Math. Debrecen 57, no. 3-4 (2000), 297-306.
- [3] Okumura, M., Some remarks on space with a certain contact structure. Tohoku Math J. 14 (1962), 135- 145.
- [4] Ozgur, C., N(k)-quasi Einstein manifolds satisfying certain conditions. Chaos, Solitons and Fractals 38 (2008), 1373-1377.
- [5] Ozgur, C., Tripathi, M. M., On the concircular curvature tensor of an N(k)-quasi Einstein manifold. Math. Pannon., 18(1) 2007, 95-100.
- [6] Ozgur, C., Sular, S., On N(k)-quasi Einstein manifold satisfying certain conditions, B.J.G.A, 13(2)(2008), 74-79.
- [7] Prasad, B., A pseudo-projective curvature tensor on a Riemannian manifold. Bull. Cal. Math. Soc., 94(3)(2002), 163-167.
- [8] Tanno, S., Ricci curvatures of contact Riemannian manifolds. Tohoku Math. J., 40 (1988), 441-448.
- [9] Tripathi, M. M., Kim, J. S., On N(k)-quasi Einstein manifold. Commun. Korean Math. Soc., 22(3) (2007), 411-417.Received by the editors April 16, 2009 **a** 4.1. The conservation manifold Mar with consent contact (308), 1777–1777,
 C. Organization C., And C., Coreals, M., Coreals,
	- [10] R.N.Sing,M.K.Pandey,D.Gautam ,on N(k)-quasi Einstein manifold NOVI SAD J. MATH VOL. 40,No. 2,2010,23-28 (2007), 411-417.Received by th
2009
R.N.Sing,M.K.Pandey,D.Gautam
Einstein manifold NOVI SAD
40,No. 2,2010,23-28
M.C.Chaki and R.K.Maity, C
	- [11] M.C.Chaki and R.K.Maity, On Quasi Einstein manifolds, publ. math. Debrecen, 57(2000)297-306.
	- B.Y.Chen, Geometry of Submanifolds, Marcel Dekker, Inc., New York, 1973.
	- [13] B.Y.Chen and K. Yano, hypersurfaces of a conformally flat space, Tensor, N.S., 26 (1972)318- 322.
	- [14] U.C.De and Gopal Chandra Ghosh, On quasi Einstein manifolds, Periodica Mathematica Hungarica, 48(1- 2)(2004) 223-231. en and K. Yano, hypersurfaces of a
hally flat space, Tensor, N.S., 26 (1972)318-
and Gopal Chandra Ghosh, On quasi Einstein
ds, Periodica Mathematica Hungarica, 48(1-
) 223-231.
and Gopal Chandra Ghosh, On generalized
Eins
	- U.C.De and Gopal Chandra Ghosh, On generalized quasi Einstein manifolds, Kyungpookmath. J., 44(2004) 607-615.
	- Mukut Mani tripathi and Jeong-Sik Kim, On N(k)quasi Einstein manifolds, Commun.Korean Math. quasi Einstein manifolds, Co
Soc. 22(3) (2007),411-417.
	- R. N. Singh, M. K. Pandey, D. Gautam, on $N(k)$ quasi Einstein manifold, Novi Sad J. Math.Vol. 40, Sad

No. 2, 2010, 23- Ozg¨ur, C. and Sular, S., On N(k) quasi Einstein manifolds satisfying certain conditions, Bolkan J. Geom. Appl., **13(2)** (2008), 74– 79.

[18] Tripathi, M. M. and Kim, J. S., On N(k)-quasi Einstein manifolds, Commun. Korean Math. Soc., 22(3) (2007), 411–417.