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I. INTRODUCTION

A Quasi-Einstein  manifold is precisely a simple and
natural generalization of a Einstein manifold. A quasi-Einstein
manifold is defined  as a non -flat Riemannian manifold (Mn

,g) (n>2)  [2] if the Ricci tensor  S of  type (0,2) is not
identically zero and satisfies the condition

(1.1) S(X,Y) =a g(X,Y) + b ɳ(X) ɳ(Y),
X,YϵTM

where b ≠ 0 ,a and b are smooth functions on the manifold and
η is a not vanishing of 1-form such that its Ricci operator Q
satisfies

(1.2) Q= aI + bn

for some smooth functions a and b ≠ 0, where ɳ is a
non-zero 1-form such that,

(1.3) g(X, ) =ɳ(X); g( , ) =ɳ( ) = 1

for the associated vector field ξ. The generator of the
manifold is the  unit vector field ξ. Where a and b are scalars
and are known as the associated scalars.

(QE)n is the notation for an n-dimensional manifold

of this kind .  If b= 0 and a= then this reduces to the well-
known Einstein manifold. This suggest the name given to this
manifold as 'Quasi-Einstein Manifold'.

In an n-dimensional quasi-Einstein manifold the
Ricci tensor has precisely two distinct  eigen values a and a +
b  , where multiplicity of a is  (n -1) and a + b is simple. A
natural example of a quasi-Einstein manifold is proper ɳ-
Einstein contact metric manifold ([1], [3]).

In 2007 Mukut Mani Tripathi and Jeong-Sik Kim, it
is proved that conformally flat quasi Einstein manifolds are
Certain N(k)-quasi Einstein manifolds.

Definition 1. Let (Mn, g) be a non flat Riemannian manifold.
If the ricci tensor S of (Mn, g) isnon zero and satisfies S(X, Y )
= ag(X, Y )+ bA(X)B(Y )+ cB(X)A(Y ),

where a, b and c are smooth functions and A and B
are non zero 1-forms such that g(X,U) =A(X) and g(X, V) =
B(X) for all vector fields X, and U and V being the orthogonal
unit vectorfields called generators of the manifold belong to
N(k), then we say that (Mn, g) is a N(k)-quasi Einstein
manifold and is denoted by N(k)−(QE)n. [11]

M.M. Tripathi and J.S. Kim [9] in 2007 studied a

quasi-Einstein manifold whose generator belongs to the k-
nullity distribution N(k) and called such a manifold as N(k)-
quasi Einstein manifold. Conformally flat quasi-Einstein
manifolds are certain N(k)-quasi Einstein manifolds is proved
in [9]. In [8] the derivation conditions R( ,X).R = 0 and R(

,X).S = 0 are   studied  where R and S denotes  the curvature
and Ricci tensor, respectively. Cihan Ozgur and M.M. Tripathi
[5] continued the study of the N(k)-quasi Einstein
manifold.The derivation conditions Z( ,X).R = 0and Z(

,X).Z = 0 on N(k)-quasi Einstein manifold were studied in [5]
by Ozgur, C., Tripathi, M. M, where Z is the concircular
curvature tensor. Moreover, in [5], for an N(k)-quasi Einstein

manifold it was proved  that k = C. Ozgur [4], in 2008,

studied the condition R.A = 0 for an N(k)-quasi Einstein
manifold, where A denotes the projective curvature tensor and
some physical examples of N(k)-quasi Einstein  manifolds are
given. Again, in 2008, C. Ozgur and Sibel Sular [6], studied
N(k)-quasi Einstein manifold satisfying R( ,X).A = 0and R(

,X). Ã = 0, where A  and Ã represent the Weyl conformal
curvature tensor and the quasi-conformal curvature tensor,
respectively. This paper is a continuation of  previous studies.

The paper is organized as follows after introduction
in Section II we discussed  N(k)-quasi Einstein manifold. In
Section III, we studied N(k)-quasi Einstein manifold satisfying
R( ,X). Ã = 0and Section IV deals with aRicci symmetric

quasi-Einstein manifold with constant associated scalars.
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II. N(k)-QUASI EINSTEIN MANIFOLD

The k-nullity distribution N(k) of a Riemannian
manifold Mn is defined by[8]

N(k) : p →Np(k) = {Z ϵTpM | R(X, Y,Z) = k(g(Y,Z)X -
g(X,Z)Y

for all X, Y ϵTM, where k is some smooth function.

The notion of N(k)-quasi Einstein manifold was
introduced by Tripathi and Kim [9]. If the generator ξ of a
quasi Einstein manifold belongs to the k nullity distribution
N(k) for some smooth function k, then this quasi Einstein
manifold is called N(k)-quasi Einstein manifold [9]. The N(k)-
quasi Einstein manifolds have also been studied by Ozgur [4],
Ozgur and Sular [6],Ozgur andTripathi [5].

If the generator of the quasi-Einstein manifold Mn

belongs to the k-nullity distribution N(k) for some smooth
function k, then Mn is called N(k)-quasi Einstein manifold [9].

On N(k)-quasi Einstein manifold, we have [9]

(2.1)                    R(Y,Z) = k(ɳ(Z)Y -ɳ (Y )Z).

The above equation is equivalent to

(2.2)                 R( , Y )Z = k(g(Y,Z) -ɳ(Z)Y ).

In particular, the above two equations imply that

(2.3) ɳ(R(Y,Z) ) = 0:

Moreover, it is known [5] that

In an n-dimensional N(k)-quasi Einstein manifold, it follows
that

(2.4)                            k =

Theorem 2.1. An n-dimensional conformally flat quasi

Einstein manifold is an N ( ) -quasi Einstein manifold.

Thus, we see that n-dimensional conformally flat
quasi Einstein manifolds are natural examples of  N(k)-quasi
Einstein manifolds. It is well-known that in a 3-dimensional
Riemannian manifold (M3,g) the conformal curvature tensor
vanishes. [16]

Corollary 2.2. Each 3-dimensional quasi Einstein manifold is

an N( ) quasi Einstein manifold.

Let (Mn, g) be an N(k)-quasi Einstein manifold. Then, we have

(2.5) R(Y,Z) = k (ɳ (Z) Y - ɳ (Y )Z) .

The equation (2.7) is equivalent to

(2.6) R( ,Y )Z = k (g (Y,Z) - ɳ (Z) Y ) .

In particular, the above equation implies that

(2.7) R( ,Y ) ɳ = k (ɳ (Y - Y ) .

From (2.7) and (2.8), we have

(2.8) ɳ (R(Y,Z) ) = 0,

(2.9) ɳ (R( , Y )Z) = k (g (Y,Z) - ɳ(Y ) ɳ (Z)) .

III. N(k)-QUASI EINSTEIN MANIFOLD SATISFYING
R(ᶓ , X). Ã = 0.

In 2002, B. Prasad [7] introduced the notion of a
pseudo-projective curvature tensor. The pseudo-projective
curvature tensor Ã on a manifold Mn of dimension n is defined
as follows.

Ã(X,Y )Z = R(X, Y )Z + [S(Y,Z)X - S(X,Z)Y ]

(3.1) - [ + ][g(Y,Z)X - g(X,Z)Y ],

where and are the constants such that , 0,

R is the curvature tensor and S is the Ricci tensor. It is obvious

that if = 1 and = - , then the pseudo-projective

curvature tensor reduces to a projective curvature tensor.
Let, N(k)-quasi Einstein manifold satisfy the condition

(3.2)                                R(ᶓ, Y ). Ã = 0.

This implies

0 = R( , Y ) Ã (U, V )Z - Ã (R( , Y )U, V )Z

(3.3) - Ã (U,R( , Y )V )Z -Ã (U,V )R( , Y )Z.

Taking  inner product of the equation (3.3) with , we get
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0 = g(R( , Y ) Ã (U, V )Z , ) - g(Ã (R( ,Y     )U, V )Z ,

) - g(Ã (U,R( , Y )V )Z , ) - g(Ã (U, V )R( , Y )Z, ).

By virtue of (2.2), the above equation gives

0 = k Ã (U,V,Z, Y )- ɳ( Ã (U, V )Z)ɳ(Y )
- g(Y,U)ɳ( Ã ( , V )Z) + ɳ(U)ɳ( Ã (Y, V )Z)

(3.4) - g(Y, V )ɳ( Ã (U; )Z) + ɳ(V )ɳ( Ã (U, Y )Z)

- g(Y,Z)ɳ( Ã (U; V ) ) + ɳ(Z)ɳ( Ã (U, V )Y )],

where Ã (U, V,Z, Y ) = g(Ã (U,V )Z, Y ).

Now, from (1.1), (2.1), (3.1), we have

(3.5) ( Ã (X, Y )Z) = [g(Y,Z)ɳ(X) - g(X,Z)ɳ(Y )].

where = [ k - ( + ) - ] , which, by  2.1, reduces

to

= b )

n . From (3.6), it follows that

(3.6) ɳ(Ã (X, Y ) ) = o,

(3.7) ɳ( Ã ( , Y )Z) = [g(Y,Z) - ɳ(Y )ɳ(Z)]

And

(3.8) ɳ( Ã (X; )Z) = [ɳ(X)ɳ(Z) - g(X,Z)].

Using (3.6), (3.7), (3.8) in (3.5), we obtain

(3.9) 0 = k [Ã (U, V,Z, Y ) - (g(Y,U)g(V,Z)- g(Y, V)g(U,Z)],

which, due to the equation (3.1), yields

(3.10) 0 = k[ R(X, Y,Z,W) + fS(Y,Z)g(X,W) -

S(X,Z)g(Y,W)g -{ ( )+

}g (g(Y,Z)g(X,W) - g(X,Z)g(Y,W))].

Contracting above equation (3.11) over X and W, we get

(3.11)              0 = k[S(Y,Z) - µg(Y,Z)],

where

µ = [λ { ) }].

Since the manifold under consideration  is not an
Einstein manifold, therefore it follows that k = 0.
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(4.4)            ( Xɳ)(Y ) = 0 as b 0:

Putting Y=X in equation (4:4), we find

( X )(X) = 0
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Therefore, we have the following two theorems.

Theorem 4.1. If the quasi-Einstein manifold Mn with constant
associated scalars is Ricci symmetric, then its generator
satisfies g( X ,X) = 0.

Theorem 4.2. If the quasi-Einstein manifold Mn with constant
associated scalars is Ricci symmetric, then its generator is a
Killing vector field.

Next, from (4:3), we get

(X,Y,Z)( XS)(Y,Z) = b[( Xɳ)(Y )ɳ(Z) +

( Xɳ) (Z) ɳ(Y )  + ( Y ɳ)(Z) ɳ(X) + ( Y ɳ)(X) ɳ(Z)
(4.6)                           + ( Zɳ)(X)ɳ(Y ) + ( Xɳ)(Y )ɳ(X)],

where (X,Y,Z) denotes a cyclic sum with respect to X, Y

and Z.

i.e. (X,Y,Z)( XS)(Y,Z) = ( XS)(Y,Z) + ( Y S)(Z,X) +

( ZS)(X, Y ).

If a generator of the quasi-Einstein manifold is a
Killing vector, then we have the equation (4:5), which on
using in (4:6), gives

( XS)(Y,Z) + ( Y S)(Z,X) + ( ZS)(X, Y ) = 0.

Thus, we may have the following theorem:

Theorem 4.3. If the generator of the quasi-Einstein manifold
Mn with constant associated scalars is Killing, then its Ricci
tensor is cyclic parallel.
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