
IJSART - Volume 1 Issue 7 –JULY 2015 ISSN [ONLINE]: 2395-1052

Page | 144 www.ijsart.com

Role of Genetic Algorithms in Task Scheduling
Optimization

Ashish Mittal1, Kapil Chawla2

1, 2 SITM, Sonipat

Abstract- Task scheduling in multiprocessor systems also
known as multiprocessor scheduling has been a source of
challenging problems for researchers in the area of computer
engineering. The general problem of multiprocessor
scheduling can be stated as scheduling a set of partially
ordered computational tasks onto a multiprocessor system so
that a set of performance criteria will be optimized. Efficient
scheduling of application tasks is critical to achieving high
performance in parallel multiprocessor systems. Genetic
algorithm is a meta-heuristic technique and also a search
technique used to find approximate solutions to optimization
and search problems. The major steps involved are the
generation of a population of solutions, finding the objective
function and fitness function and the application of genetic
operators. In this Paper, following things are being discussed,
task scheduling, Role of Genetic Algorithm in task scheduling
in multiprocessor environment, why we need this algorithm,
when we can use this algorithm, Genetic operators.

Keywords- Task Scheduling, Multiprocessor system, Genetic
Algorithm, Genetic Operators, Optimization etc.

I. INTRODUCTION

Genetic algorithms operate on finite-sized
populations of candidate schedules. At each iteration of the
algorithm, relatively poor schedules are removed from the
population and are replaced with new candidate schedules
generated by: (1) applying mutations to individual schedules
in the population; (2) applying cross-over operations to pairs
of schedules in the population.

Genetic algorithms as powerful and broadly

applicable stochastic search and optimization techniques, are
the most widely known types of evolutionary computation
methods today. The father of the original Genetic Algorithm
was John Holland who invented it in the early 1970's. In
general, a genetic algorithm has five basic components as
follows:

(i) An encoding method that is a genetic representation

(genotype) of solutions to the program.
(ii) A way to create an initial population of individuals

[Davis, 1991].

(iii) An evaluation function, rating solutions in terms of
their fitness, and a selection mechanism.

(iv) The genetic operators (crossover and mutation) that
alter the genetic composition of offspring during
reproduction.

(v) Values for the parameters of genetic algorithm

II. LITERATURE REVIEW

(I) EFFICIENT MULTIPROCESSOR SCHEDULING
BASED ON GENETIC ALGORITHMS [E. S. H. HOU, R.
HONG, AND N. ANSARI] [1990]. In this paper [10], the
authors proposed an efficient method based on genetic
algorithms to solve the multiprocessor scheduling problem.
The representation of the search node will be based on the
schedule of the tasks in each individual processor. The genetic
operator proposed is based on the precedence relations
between the tasks in the task graph. The proposed genetic
algorithm will be applied to the problem of scheduling the
robot inverse dynamics computations. The genetic operator
developed takes into account the precedence relations of the
tasks and guarantee that the new strings generated are legal.

(II) A MULTIPROCESSOR SCHEDULING SCHEME
USING PROBLEM-SPACE GENETIC ALGORITHMS
[MUHAMMAD K. DHODHI, IMTIAZ AHMAD,
ISHFAQ AHMAD] [1995]. In this paper [11], the authors
proposed a technique based on Problem-space genetic
algorithms (PSGA). PSGA combines the search power of GA
with List scheduling heuristics in order to reduce the
completion time and to increases the resource utilization. In
the following paper, a PSGA based technique is proposed for
static multiprocessor scheduling problem including the
communication delays to reduce the completion time and to
increase the throughput of the system.

(III) IMPROVED MULTIPROCESSOR TASK
SCHEDULING USING GENETIC ALGORITHMS
[MICHAEL BOHLER, FRANK MOORE, YI PAN]
[1999]. This paper [12] described the design and
implementation of a genetic algorithm for minimizing the
schedule length for a general task graph to be executed on a
multiprocessor system. Minor changes to the program would
easily support the introduction of interprocessor

IJSART - Volume 1 Issue 7 –JULY 2015 ISSN [ONLINE]: 2395-1052

Page | 145 www.ijsart.com

communication delays and overhead costs of the system (Jesik
et al 1997), as well as other options.

III. WHY GENETIC ALGORITHMS?

It is no surprise that GA is starting to find more

common use in the workplace. With their inherent simplicity
and versatility, they are often not difficult to implement onto
existing applications. Genetic Algorithms are also very time
efficient, capable of finding solutions to problems in a short
amount of time.

(i) GA can solve hard problems quickly and reliably: Since
GA are population-based algorithms that rely on sampling the
given population, they are able to sustain reliable results with
a predictable margin of error.

(ii) GA is easy to interface to existing simulations and
models: Since GA require very little problem specific
information, they are relatively easy to adapt to existing
applications and models. The only thing that a GA needs is to
have a candidate solution passed into it and to return the result
of its fitness test.

(iii) GA is extensible: In a given population, the solution
spaces may be highly multi modal; there may be many
possible global solutions in the population. As in reality, there
may not be just one global solution for a given problem. An
example is the population patterns of certain species. There
may be more than one area in the world where this specie may
thrive. There are various niches instead of one localized area.
GA account for this possibility through modifying the
selection process. This allows for the testing of more than one
strong solution area.

(iv) GA is easy to hybridize: It is also possible to make a GA
more effective by incorporating problem specific search
techniques into the GA. Some applications may have better
means of finding the best solution space than using selection
and crossover. Incorporating these means in place of or in
conjunction with selection and crossover may help yield
positive results in a shorter span of time.

IV. FLOW CHART OF GENETIC ALGORITHM

This flowchart illustrates the basic steps in a GA. The steps
shown in the flowchart are discussed briefly as:

(a) Initialization: The initial population of candidate

solutions is usually generated randomly across the search
space. However, domain-specific knowledge or other
information can be easily incorporated.

(b) Evaluation: Once the population is initialized or an
offspring population is created, the fitness values of the
candidate solutions are evaluated.

(c) Termination criteria: The genetic algorithm uses three
termination criteria.

1. The aim of the genetic algorithm is to find a solution for a
problem. So when such a solution is found the genetic
algorithm stops. One termination criterion is the fitness of
the best genotype of the population. Hence the genetic
algorithm terminates when the best genotype has reached
or surpassed the target solution fitness.

2. Another method is to keep track of the number of fitness
evaluation calls made by the genetic algorithm, function
calls to determine the fitness of child genotypes. The
genetic algorithm terminates after a set number of these
evaluations are done.

3. A genetic algorithm can also be terminated at the end of
every cycle, when manually interrupted by the user.

Initialize

Output
Solution

Evaluate

Perform Selection,
Crossover and Mutation

Evaluate

Terminate?

IJSART - Volume 1 Issue 7 –JULY 2015 ISSN [ONLINE]: 2395-1052

Page | 146 www.ijsart.com

(d) Selection: Selection allocates more copies of those
solutions with higher fitness values and thus imposes the
survival-of-the-fittest mechanism on the candidate
solutions. The main idea of selection is to prefer better
solutions to worse ones, and many selection procedures
have been proposed to accomplish this idea.

(e) Recombination: Recombination combines parts of two or
more parental solutions to create new, possibly better
solutions (i.e. offspring). There are many ways of
accomplishing this, and competent performance depends
on a properly designed recombination mechanism. The
offspring under recombination will not be identical to any
particular parent and will instead combine parental traits
in a novel manner.

(f) Mutation: While recombination operates on two or more
parental chromosomes, mutation locally but randomly
modifies a solution. Again, there are many variations of
mutation, but it usually involves one or more changes
being made to an individual’s trait or traits. In other
words, mutation performs a random walk in the vicinity
of a candidate solution.

(g) Replacement: The offspring population created by
selection, recombination, and mutation replaces the
original parental population. Many replacement
techniques such as elitist replacement, generation-wise
replacement and steady-state replacement methods are
used in GAs.

(h) Repeat steps 2–6 until a terminating condition is met.

V. CONCLUSION

The problem of scheduling of tasks to be executed on
a multiprocessor system is one of the most challenging
problems computing. Genetic algorithms are well adapted to
multiprocessor scheduling problems. As the resources are
increased available to the GA, it is able to find better
solutions. GA performs better as compared to other traditional
methods. Overall, the GA appears to be the most flexible
algorithm for problems using multiple processors. It also
indicates that the GA is able to adapt automatically to changes
in the problem to be solved.

The advantages of the GA approach are that it is
simple to use, requires minimal problem specific information,
and is able to effectively adapt in dynamically changing
environments.

REFERENCES

[1] Yi-Wen Zhongiz, Jian-Gang Yang, “A Genetic
algorithm for tasks scheduling in parallel
multiprocessor systems”, Proceedings of the Second
International Conference on Machine Learning and
Cybernetics, Xi'an, 2-5 November 2003

[2] Michael Rinehart, Vida Kianzad, and Shuvra S.

Bhattacharyya, “A Modular Genetic Algorithm for
Scheduling Task Graphs”, 2003.

[3] M. Salmani Jelodar, S. N. Fakhraie, F. Montazeri, S.

M. Fakhraie, M. Nili Ahmadabadi, “A
Representation for Genetic-Algorithm-Based
Multiprocessor Task Scheduling”, Congress on
Evolutionary Computation, Vancouver, BC, Canada,
IEEE July 16-21, 2006.

[4] M. Nikravan and M. H. Kashani, “A Genetic

algorithm for process scheduling in distributed
operating system considering load balancing ”,
Proceedings 21st European Conference on Modelling
and Simulation, 2007.

[5] Keshav Dahal, Alamgir Hossain, Benzy Varghese,

“Scheduling in Multiprocessor System Using Genetic
Algorithms”, 7th Computer Information Systems and
Industrial Management Applications, IEEE 2008.

[6] Davis, “Handbook of Genetic Algorithms”, Van

Nostrand Reinhold, 1991.

[7] E. Hou, R. Hong, and N. Ansari, "Multiprocessor
scheduling based on genetic algorithms", Dept of
ECE, New Jersey Institute of Technology, Technical
Report, Aug. 1990.

[8] Forrest, Stephanie. "Genetic algorithms: principles of

natural selection applied to computation", Science,
vol.261, 1993.

[9] Tang, K.S., K.F. Man, S. Kwong and Q. He. "Genetic

algorithms and their applications", IEEE Signal
Processing Magazine, vol.13, 2004.

[10] Michael Bohler, Frank Moore, Yi Pan. “Improved

Multiprocessor Task Scheduling Using Genetic
Algorithms”, Twelfth International FLAIRS
Conference, 1999.

IJSART - Volume 1 Issue 7 –JULY 2015 ISSN [ONLINE]: 2395-1052

Page | 147 www.ijsart.com

[11] S.N.Sivanandam, S.N.Deepa, “Introduction to
Genetic Algorithms”, Springer-Verlag Berlin
Heidelberg, 2008.

[12] Forrest, Stephanie. "Genetic algorithms: principles of

natural selection applied to computation" Science,
vol.261. 1993.

