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Abstract- Electrocardiogram (ECG), a noninvasive technique 
is used as a primary diagnostic tool for cardiovascular 
diseases. A cleaned ECG signal provides necessary 
information about the electrophysiology of the heart diseases. 
It provides valuable information about the functional aspects 
of the heart and cardiovascular system. The objective is to 
automatic detection of cardiac arrhythmias in ECG signal. 
This work focuses on developing a sophisticated, small and 
reliable ASIC (Application Specific Integrated Circuit) chip 
that can be used for monitoring and detecting the rate of heart 
beat for heart transplantation patient. Well known adaptive 
noise cancellation techniques are such as LMS (Least Mean 
Square) and RLS (Recursive Least Mean Square) have been 
extensively used for noise cancellation techniques with good 
performance. The proposed architectures have been modeled 
and verified for their functionality. Using the entire ASIC flow, 
suitable results obtained at various stages are compared and 
reported. The high computational requirement of all adaptive 
filtering algorithms has limited the scope of its use in medical 
applications. However, with rapid advances in VLSI (Very 
Large Scale Integration) technology, it is possible to 
implement complex circuits in a single chip. This work focuses 
on developing architectures for adaptive noise cancellation 
and its ASIC implementation. 
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I. INTRODUCTION 
 

There is an enormous demand for reducing size and 
power of transferable devices, used for monitoring critical 
signals such as electrocardiogram (ECG), 
electroencephalogram (EEG) and electromyogram (EMG). 
Besides biomedical products, there are large number of 
emerging healthcare applications that involve sensors and their 
associated precise instrumentation and signal conditioning. 
Low power, miniaturized and low cost monitoring/sensing 
devices are the key components in such systems. The 
performance of these devices directly depends on analog 
signal conditioning, which must extract and amplify extremely 
small signals from a noisy environment. Myopotential 
spectrum is predominant at higher frequencies and 

significantly overlaps with the spectrum of the ECG signal, 
primarily with the spectrum of the QRS complex [1]. Thus, 
the automatic interpretation, following accurate detection of 
characteristic ECG points and waves, and measurement of 
signal parameters, become difficult. EMG noise is caused by 
increased muscle activity. The ECG signal is used to know the 
cardiac condition of an ambulatory patient. Wireless 
Ambulatory ECG recording is now routinely used to detect 
arrhythmias and cardiac abnormalities. As the ECG signal 
contains numerous artifacts, these artifacts have to be removed 
before monitoring, from the receiver point-of-view, so that a 
correct decision can be taken. So, it is necessary to remove the 
different artifacts present in the ECG signal hence there is a 
need of filtering the ECG signal. In a practical case most of 
the signals are nonstationary and the filter, which we use must 
change its coefficient according to the input signal. Several 
filtering techniques have been presented in literature for ECG 
analysis, which includes, adaptive and non adaptive 
techniques [11]–[13], adaptive filtering techniques permit to 
the detect time varying potentials and to track the dynamic 
variations of the signals. 

 
Electrical activity of heart can be recorded with 

surface electrodes on chest or limbs. ECG wave shape may be 
altered by cardiovascular diseases, atrial fibrillation, and 
ventricular fibrillation and conduction problems. ECG signal 
comprises of P wave, PG segment, QRS complex, ST segment 
and T wave. QRS complex wave shape is affected by 
conduction disorders. Ventricular enlargement could cause a 
wider than normal QRS complex. The ST segment may be 
depressed due to myocardial infarction. Presence of noise is 
one of the most challenging problems in Signal Processing 
basically due to the fact that a signal can pick up noise and be 
distorted such that the information carried by the signal can be 
misinterpreted. Thus, it is important that the impairments due 
to noise is reduced or eliminated totally from signals in almost 
all signal processing and communications tasks. Filtering is 
widely used to remove the noise from the signal. However, in 
the process, it also removes a part of the signal, which may be 
an important part of the signal processing application. 
 

The wavelet transform is an emerging signal 
processing technique that can be used to represent real-life non 
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stationary signals with high efficiency [1]. Indeed, the wavelet 
transform is gaining momentum to become an alternative tool 
to traditional time-frequency representation techniques such as 
the discrete Fourier transform and the discrete cosine 
transform. By virtue of its multi-resolution representation 
capability, the wavelet transform has been used effectively in 
vital applications such as transient signal analysis [2], 
numerical analysis [3], computer vision [4], and image 
compression [5], among many other audiovisual applications. 
Wavelet transform is mostly needed to be embedded in 
consumer electronics, and thus a single chip hardware 
implementation is more desirable than a multi-chip parallel 
system implementation. However, time-varying autoregressive 
models allow assessing, on a beat to beat basis, the spectral 
parameters of HRV signal in a fast and efficient way 
independently on the transitory events found through the 
whole night recording (provoked by arousals, body 
movements, and changes on sleep stages or apneas). 

 
In the last few decades the demand for portable and 

embedded digital signal processing (DSP) systems has 
increased dramatically. Applications such as cell phones, 
hearing aids, and digital audio devices are applications with 
stringent constraints such as area, speed and power 
consumption. These applications require an implementation 
that meets these constraints with the shortest time to market. 
The possible alternative implementations that can be used 
range from an ASIC custom chip, general purpose processor 
(GPP) to DSP processors. While the first choice could provide 
the solution that meets all the hard constraints, it lacks the 
flexibility that exists in the other two, and also its design cycle 
is much longer. FPGAs prove particularly useful in data path 
designs, where the regular structure of the array can be utilized 
effectively. The programmability of FPGAs adds flexibility 
not available in custom approaches, while retaining relatively 
high system clock rates. 

 
II. RELATED WORK AND ISSUES 

 
  The nonlinear filter that uses reversible WT allows 
estimating noise level in individual decomposition bands and 
proportionally adapting correction of WT coefficients. In this 
way, we can achieve effective noise suppression while 
distortion of the ECG signal is minimized. Besides the choice 
of decomposition and reconstruction filter banks, the choice of 
the level of decomposition and the strategy of WT coefficient 
adjustment are also important. Different strategies of 
thresholding the WT coefficients with down sampling are 
discussed in [4]. In [5], the author attempts to optimize the 
threshold parameters for a wavelet filter with WT with 
decimation, and concludes that the optimal parameter values 
depend on the level of interference. The disadvantage of 

filtering with WT with down sampling is that the result is 
dependent on the choice of the beginning of the filtering and 
the need for interpolation in reverse transform, which is 
always a source of errors. Transform without down sampling, 
the so called stationary (redundant) wavelet transform (SWT), 
is more preferable for filtering. Thresholding using SWT is 
solved in [6]. Better results can be achieved by using the 
wavelet Wiener filtering, when each transform coefficient is 
adjusted separately. The Wiener filter requires an estimate of a 
noise-free signal, which is necessary to calculate the 
correction factor for the adjustment of transform coefficients. 
The principle of the method was described in [7], where the 
estimate of the noise-free signal was performed using another 
wavelet filter, both implemented with decimation. The wavelet 
Wiener filtering (WWF) with decimation and with simplified 
estimation of the noise-free signal was used in [2]. In [8], 
SWT with estimation of the noise-free signal was used. The 
estimation was carried out with WT with decimation and hard 
thresholding. In [9], both the transforms are stationary; the 
estimation of a noise-free signal was carried out by 
nonnegative garrote thresholding. The filters were tested on 
signals with artificial noise, whose power spectrum was 
adapted to the spectrum of an EMG signal. The parameters of 
all the Wiener filters mentioned were set intuitively. The 
authors of all the papers cited used dyadic transforms. 
 
  A flowchart demonstrating the signal processing 
steps of the Pan and Tompkins algorithm (Pan & Tompkins, 
1985) for the classical derivative-based QRS detection is 
shown in Fig. 3. The ECG signal first passes through a set of 
linear processes, including a band-pass filter comprising a 
cascaded low-pass and high-pass, and a derivative function. 
Non-linear transformation is then employed in form of a signal 
amplitude squaring function. Finally, moving window 
integration is performed before an adaptive threshold is 
applied for detection of the QRS complexes. The underlining 
principle of the algorithm is the detection of the slope of the R 
wave through the derivative function, amplified by the 
squaring function. The moving-window integration then 
provides wave-form feature information in addition to the 
detected R wave slope. Different from conventional method, 
in our system, as we are only interested in the RR interval in 
HRV analysis, we choose to assign an R peak to each detected 
R slope from the output of the squaring function through an 
adaptive threshold. Thus, we only require the band-pass filter, 
derivative function, squaring function, and adaptive threshold 
in our system. After differentiation, squaring function is 
employed to enhance the characteristics of the signal. Then a 
threshold is applied to the squared signal to detect the start of 
the QRS complex. The peak of the squared signal is identified 
as the R peak of the ECG data. 
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III. ADAPTIVE NOISE CANCELLER 
 
 During digital signal processing, a number of 
unpredictable signals, noises or time-varying signals often 
need to process, it is impossible to achieve optimal filtering 
for fixed coefficient filter, so adaptive noise canceller must be 
designed to track the change of signal and noise. Adaptive 
noise canceller consists of two basic parts: the filter which 
applies the required processing on the incoming signal which 
is to be filtered, and an adaptive algorithm, which adjusts the 
coefficients of that filter to somehow improve its performance. 
When adaptive noise canceller is designed, the autocorrelation 
function of signals and noises cannot be known in advance. 
During the filtering, with the autocorrelation function of 
signals and noises changing slowly over time, filter can 
automatically adapt and adjust to meet the requirements of the 
minimum mean squared error. 

 
Figure 1.  Simplified Adaptive Noise Canceller 
 
Fig.1 shows the structure of adaptive filter. The 

objective is to filter the input signal, x(n), with an adaptive 
filter in such a manner that it matches the desired signal, d(n). 
The desired signal, d(n), is subtracted from the filtered signal, 
y(n), to generate an error signal, e(n). 
 

The LMS algorithm is a widely used technique for 
adaptive filtering. A significant feature of the LMS algorithm 
is simplicity. In this algorithm filter weights are updated with 
each new sample as required to meet the desired output. The 
computation required for weights update is illustrated by 
equation. If the input values x(n), x(n-1), x(n-2)……… x(n-
N+1) form the tap input vector x(n) where N denotes the filter 
length, and the weights w (n),w1(n),w2(n) ……. form the tap 
weight vector w(n), then the LMS algorithm is given by the 
following equations: 

y(n) = wH(n) u(n) 
e(n) = d(n) - y(n) 

     w(n + 1) = w(n) + μ u(n)e(n) 
 

y(n) denotes the filter output, d(n) denotes the desired 
output, e(n) denotes the filter error (the difference between the 
desired filter output and current filter output) which is used to 

update the TAP weights, μ denotes a learning rate, and 
bw(n+1) denotes the new weight vector that will be used by 
the next iteration. A computationally simpler version of the 
gradient search method is the least mean square (LMS) filter, 
in which the gradient of the mean square error is substituted 
with the gradient of the instantaneous squared error function. 

 
Figure 2.  LMS Equation Implementation 

 
A normal FIR filter based on MAC operations could 

be used to implement this algorithm. A weight update 
mechanism should be added to the FIR filter to update the 
filter weights according to the calculated error. This module 
requires extra multiplications and additions. 

 

Figure 3.  FIR-LMS Filter Structure 

The filter outputs obtained from the FIR block are 
used by the LMS algorithm to calculate the changes to the 
filter coefficients, Δh, required for the next filtering process. 
When echo data is received from the link it is buffered and 
upon subtraction from the filter output values, the error term 
e(n) is obtained. This is used for obtaining the Δh values to be 
added/subtracted from the current filter coefficients. Once the 
new coefficients are available, an h available flag is asserted 
informing the FIR block that the new coefficients are available 
for the next filtering process to initiate. This process is 
repeated until the error term fed into the system is negligible. 
The most critical part in the design of the LMS block is the 
learning factor whose optimum value had to be found by trial 
and error within the bounds specified by the algorithm. The 
learning factor determines how fast the algorithm converges. 
Setting a learning factor that is too large results in the output 
oscillating due to overshoot, hence convergence is never 
reached. On the other hand, if the learning factor is too small 
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slow convergence speeds will result, hence increasing the risk 
of overflow in the input buffers. 

 

Figure 4.  ECG Signal Processing 

The Least Mean Square (LMS) algorithm was first 
developed by Widrow and Hoff in 1959. It has become one of 
the most widely used algorithms in adaptive filtering. The LMS 
algorithm is a type of adaptive filter known as stochastic 
gradient-based algorithms as it utilizes the gradient vector of 
the filter tap weights to converge on the optimal wiener 
solution (Mahesh Godavarti 2005). It is well known and widely 
used due to its computational simplicity. It is this simplicity 
that has made it the benchmark against which all other adaptive 
filtering algorithms are judged as said by Sinead Mullins and 
Conor Heneghan (2002). 

IV. EXPERIMENTAL RESULTS 
 

The ECG signals used in our testing are from the 
standard physionet database. This database consists of two sets 
of 125 realistic 12-lead and 3-lead (orthogonal) ECG signals. 
Electrocardiograms have a length of 10 s and were sampled at 
500 Hz sampling frequency with a quantization step of 5 μV. 
The signals contain interference, whose SNR is between 0 and 
50 dB, although some segments of the signals can contain 
noise ranging from −5 to 55 dB. The artificial noise used for 
testing was generated individually for each signal, respecting 
the original noise level and its time dependence. If we filter 
the whole database using our proposed technique, the SNR 
increases for all signals. 

 
Figure 5.  Denoised ECG Signal Using Adaptive Filter 

In this section, providing adequate healthcare for the 
gradually aging population, in light of reduced personnel and 
rising costs, is a problem the modern world that is currently 
faced with. Portable medical systems developed for bringing 
healthcare to the average user as well as the elderly is a rising 
trend which can benefit the entire social healthcare 
infrastructure. To enable practical employment of ever-present 
healthcare devices for portable medical applications, an 
experimental ECG system-on-chip prototype has been 
developed. Here we describe the architecture of the proposed 
ECG SOC as well as the means of system verification 
including a Xilinx FPGA, which are connected to the ARM 
processor through an AMBA High-performance Bus (AHB). 
The designed HRV processer is implemented on the FPGA 
and verified with patterns sent from a PC. In-circuit emulator 
(ICE) is employed to feed ECG patterns into the ARM 
processor which then passed the data to the FPGA on the AHB 
bus. To connect the HRV processor on the FPGA to the AHB 
bus, an AHB wrapper is added to the original architecture, 
which provides a handshaking interface between the HRV 
processor and the AHB bus. The UART module is also 
implemented so that the capability to communicate with the 
Bluetooth module using a system clock of 24 MHz could be 
verified. The Modelsim simulation for FPGA verification is 
shown in Fig.10. Tests using the Socle Development Platform 
have verified that the HRV processor is capable of calculating 
time–frequency analysis in real-time and is possible to 
implement using VLSI technology. 

 
Figure 6.  HDL Simulation Output 

 
V. CONCLUSION 

 
Adaptive noise cancellation technique is proposed to 

remove power line interference from ECG signal using ASIC 
technology. Performance optimization is obtained through 
pipelining and resource-sharing techniques. It focuses on very-
large-scale integration (VLSI) architecture and application-
specific integrated circuit of a robust algorithm for removing 
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power line interference in multichannel biopotential recording. 
When compared with three similar interference removal 
methods, the proposed algorithm outperforms in terms of 
robustness and interference rejection performance. 
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