
IJSART - Volume 7 Issue 1 – JANUARY 2021 ISSN [ONLINE]: 2395-1052

Page | 52 www.ijsart.com

Text Data Classification Using Deep Learning Long

Short-Term Memory Network

Amandeep Kaur1, Abhinash Singla2

1Department of CSE, BGIET, Sangrur
2Department of HOD CSE, BGIET, Sangrur

Abstract- Studies show that a Long Short-Term Memory

(LSTM) Recurrent Neural Network can be used for text

classification. The strength of the LSTM is that it can capture

information in any part of the document. It also allows the

model to account for the specific order of words with higher

accuracy. In this paper text data classification using deep

learning long short-term memory network has been presented

Keywords- Long Short-Term Memory (LSTM), Text

Classification, Deep Learning, Neural Network

I. INTRODUCTION

 To label different types of text documents is both

important and desirable. There are plenty of different

situations where this is useful. Automating these tasks is

therefore something of great value if the automated system

performs on a par with, or better than, humans. Labelling

essays with grades is an example of a task that is time

consuming but also important, which is why a lot of research

has been put into Automated Essay Scoring [1]. Removing

posts from social media platforms which are against the terms

of use or illegal such as hate speech or threats of physical

violence is another case where automation, if done right,

would be beneficial. Automated labelling of texts can also be

useful in other cases. Classifying e-mails as spam, classifying

reviews as either positive or negative and assigning topics to

Wikipedia articles [2] are more examples of useful

applications. When assigning topics to Wikipedia articles, the

number of target classes is larger. The literature makes a

distinction between the case when the target classes are binary

and when there are several possible target classes, where the

latter problem is more complex. A different text classification

task is when a document can be labelled with several labels.

This is referred to as a multi-label classification task. If the

label-space is very big, the task becomes an extreme multi-

label classification task (XMTC). An example of such a

problem is the challenge proposed by [3]. The objective of this

task was to assign several Medical Subject Headings, also

known as MeSH, to new PubMed large database of medical

articles documents. Text classification tasks can be

summarized as four different types: one out of two classes,

one out of multiple classes, several labels out of a limited

number of labels and several labels out of extremely many

labels [4]. Previously, there has not been any papers which

deal with more than about 50 classes in a deep learning

framework. The data used in this thesis has over 1000 target

classes which makes this type of classification problem

uncharted territory. The objective of the thesis is to investigate

the performance of a neural network transfer learning

technique, known as ULMFiT [5], on a task similar to the

second type; to determine which one class out of multiple

classes that a text belongs to. This can be thought of as a fifth

category of text classification task; a highly multiclass

classification task. In the next section there will be an

overview of related work. Then, the data and method will be

introduced. A benchmark classifier will be constructed for

comparison purposes. Lastly, an implementation of ULMFiT

on a highly multiclass classification task was presented along

with results and a conclusion.

II. TEXT CLASSIFICATION TECHNIQUES

Various text classification techniques were initially

identified through Wikipedia and other encyclopedias and

corroborated with the content of various research articles. The

major approaches were further arranged as a tree structure

after analyzing the similarities and differences among these

various approaches along with their respective algorithms.

Generally, a classification technique could be divided into

statistical and machine learning (ML) approaches. Statistical

techniques purely satisfy the proclaimed hypotheses manually,

therefore the need for algorithms is little, but ML techniques

were specially invented for automation [6].

Fig 1. Shows text classification techniques

IJSART - Volume 7 Issue 1 – JANUARY 2021 ISSN [ONLINE]: 2395-1052

Page | 53 www.ijsart.com

2.1 Statistical Approach

Statistical techniques are purely mathematical

processes, and they act as the mathematical foundation for all

other text classifiers. It works similar to a computer program,

executing the given instructions without any ability of its own.

2.2 Machine Learning Approach

The increase in data volume, velocity, and variety

called for automation in text processing techniques including

text classification. In some situations, defining a set of logical

rules using knowledge-engineering techniques and based on

expert opinions to classify documents helps to automate the

classification task. Text classification could be divided into

three categories: supervised text classifica-tion, unsupervised

text classification, and semi-supervised text classification

based on the learning principle followed by the data model [7].

In machine learning terminology, the classification problem

comes under the supervised learning principle, where the

system is trained and tested on the knowledge about classes

before the actual classification process. Unsupervised learning

occurs when labeled data is not accessible. The process is

complicated and has performance issues.

2.1.1Supervised learning

Supervised learning is the most expensive and highly

difficult of the three. The main reason behind this notion is

that it requires a human intervention while assigning labels to

classes which is not pos-sible in large datasets. Though the

work flow mimics the techniques followed in AI processes, it

is time consuming. It is also called inductive learning in ML

[8]. Supervised learning becomes expensive when different

data distributions, different outputs and different feature

spaces occur as in heterogeneous text corpora. One of the most

widely used supervised methods is maximum likelihood

estimation

2.1.2 Unsupervised learning

Unsupervised learning is a type of ML algorithm

where, inferences are drawn from the data by clus-tering data

into different clusters without labeled responses i.e. expected

outcomes. In other words, no training data is provided to the

system. It appears complex initially, but when more data is fed

into the model, the algorithm refines itself to efficiency.

Principal component analysis, clustering and self-organizing

maps are frequently used in unsupervised learning. In many

scenarios clustering is the same as unsupervised learning.

Many times, expert knowledge required to label the samples is

either non-existent or inadequate. In such case, self-organizing

maps and correlation coefficient are used to cluster the

documents and use it to label the documents for further

classification [9]. It eliminates the curse of dimensionality and

expert intervention as well. This kind of hybrid model is more

suitable for high volume data.

2.1.3 Semi Supervised Learning

Semi-supervised learning is a combination of

supervised and unsupervised learning techniques. This type of

learning employs small amount of labeled data and large

amount of unlabeled data for train-ing. The labels are assigned

by combining labeled and unlabeled instances, as unlabeled

data mitigate the effect of insufficient labeled data on

classifier accuracy. Some of the SSL techniques are such as

self-training or self-teaching or bootstrapping, co-training,

transductive SVMs, generative models and graph-based

methods. Vector space models are mostly used in language

processing problems to address natural language semantics

that supposes words in similar contexts have similar meanings.

Meaning values are calcu-lated according to the Helmholtz

principle. This model is non-iterative but effective in

augmenting the efficiency of classifier. The system can be

combined with semantic kernels that smooth docu-ment term

vectors using term to term semantic relations.

III. NEURAL NETWORKS IN MACHINE LEARNING

Artificial neural networks (ANNs) work in the same

way as human brain in arriving at a decision. Swarm

intelligence and evolution algorithm are used to generalize a

neural network model. It works on the virtue of learning and

evolution with minimal or no human intervention. For data

classification, competitive co-evolution algorithm based

neural network model is suggested. Radial Basis Function is

the ANN component as it employs faster learning algorithms.

It has a compact network architecture that increases

classification accuracy. Also, evolutionary algorithms have a

tendency to perform well in dynamic environments by

learning rules on the fly and highly adaptive of ‘fuzzy’

characteristics. Neural networks are also popular among cases

where a hierarchical multi-label classification approach is

required. A popular way to approach different tasks in NLP is

to use a Long Short-Term Memory Recurrent Neural Network.

The strength of the LSTM is that it can capture information in

any part of the document.A simplified structure of the two-

layer, feed-forward network can be seen in Fig. 2 It takes

1 2

T

px x x x   K
 as input vector and produces

 1 2

T

kz z z z K
 as output vector where p is the number of

variables and K the number of classes. In this network, the

IJSART - Volume 7 Issue 1 – JANUARY 2021 ISSN [ONLINE]: 2395-1052

Page | 54 www.ijsart.com

input x is transformed into z through one layer of hidden

units and activation functions.

Figure 2 A feed-forward neural network with three input

variables, four hidden units and two output variables.

The intercept is represented by

 1
0 0 1x h 

. The

arrows between the nodes are the weights and there are also

activation functions between the layers but they are not visible

in this simplified illustration. In the following equations, the

Rectified Linear Unit (Nair and Hinton 2010) activation

function is used. It is defined as
   max 0,x x 

 and

introduces non-linearity into the network. The hidden units are

then defined as

        1 1 1 1

0 1 1 2 2 1,2, , .i i i i ip ph x x x i M       K K

 (1)

which is a linear function of the input variables put

through the ReLU activation function. M . is the number of

hidden units in this layer. They can also be written in matrix

notation

    1 1
h b x  

 (2)

where
 1 2

T

Mh h h h K
 is the vector of hidden units and

 

     

     

     

 

 

 

 

1 1 1 1

11 12 1 10

1 1 1 1
1 121 22 2 20

1 1 1 1

1 2 0

p

p

M M Mp M

b

   

   


   

   
   
   

    
   
   

  

K

K

M M O M M

K

is the weight matrix and vector of intercepts used to transform

the input into hidden units. The superscript refers to that this

weight matrix and intercept vector corresponds to the first

layer in the network. In the two-layer example, the output is

expressed as a function of the hidden units as

       2 2 2 2

0 1 1 2 2 , 1,2, , .i i i i iM Mz h h h i K      K K

 (3)

In matrix notation

   2 2
z b h 

(4)

Where

 

     

     

     

 

 

 

 

2 2 2 2

11 12 1 10

2 2 2 2
2 121 22 2 20

2 2 2 2

1 2 0

p

p

M M Mp M

b

   

   


   

   
   
   

    
   
   

  

K

K

M M O M M

K

and M and K are the number of hidden units and output

classes respectively. To extend this two-layer network into a

deep neural network with L layers it can be represented in

matrix notation as

      
        

       

 
     

1 1 2

1

1 1 1

2 2 2 1

1 L L L

L L L

L

h b x

h b h

h b h

z b h

 

 

 



  





 

 

 

 

M

 (5)

Note that the ReLU is not used when generating z ,

instead, if the network is trained for classification, z is put

through a softmax activation to convert the values into

probabilities. The softmax is defined as

IJSART - Volume 7 Issue 1 – JANUARY 2021 ISSN [ONLINE]: 2395-1052

Page | 55 www.ijsart.com

  1 2

1

1
max K

j

T
z z z

K z

j

soft x e e e
e



   


K

 (6)

The softmax function will assign values close to one

for the largest iz
 and close to zero for all others, unless the

largest and second largest are very close.

3.1Training a Neural Network

When training a machine learning model one wants

to find the parameter values which minimize a loss function.

Given the model

y X 

 (3.1)

a closed form solution that minimizes the MSE loss function

can be directly calculated as

 
1ˆ T TX X X y




 (3.2)

If the amount of parameters is extremely large, one

could instead use an algorithm called Gradient Descent. The

gradient descent method, when applied to linear regression,

tries to minimize an appropriate loss function, e.g. MSE. To

make the partial derivatives look nicer we define a slightly

modified MSE as

      
2

0 1

1

1ˆ ˆ ˆ ˆ, ,
2

n
i i

p

i

L y y
n

  


 K

 (3.3)

Gradient descent then takes the partial derivatives in each

iteration with regard to all
ˆ

j

        0 1

1

ˆ ˆ ˆ, , 1
ˆ , 1,2 .

ˆ

n
p i i i

j

ij

L
y y x j p

n

  

 


  




K
K

 (3.4)

Then it will update all parameters simultaneously with

learning rate
0 

 such that

          

1

1ˆ ˆ ˆ , 1,2 .
n

new old i i i

j j j

i

y y x j p
n

  


    K

 (3.5)

This update scheme is repeated until the difference

between loss functions between iterations is sufficiently small.

Then we can say that the loss function, which in this case is

convex, has converged to its global minimum Deep neural

networks often have millions of parameters and sometimes

billions. The gradient can therefore not be calculated for all

parameters and observations every time. Luckily, gradients

between subsets of the data are often similar [24]. Therefore, it

is possible to split the dataset into mini-batches and then

calculate the gradient on each mini-batch.

The size of the mini-batches is determined by the

memory in the computers GPU and is often somewhere

between 32 and 256 [25]. The calculation of gradients is done

with back-propagation [26]. Optimizing the parameter values

through calculating gradients on mini-batches is known as

Stochastic Gradient Descent (SGD). The parameters are

updated in a similar manner to Equation 3.5 but n is replaced

by the mini-batch size. When applying SGD with an adaptive

learning rate scheme and adaptive momentum, the

optimization algorithm must be able to handle this. The Adam

optimizer [27] is a common choice under these circumstances

since it is fast and can handle the adaptive learning rate and

momentum scheme. Therefore, the Adam optimizer will be

used in this thesis. When training a neural network for

classification, the MSE loss function, described in Equation

3.5, is replaced by another loss function known as cross-

entropy loss. It is defined as

       
1

, , log ; log max
K

T

i i ik i i i

k

L x y y p k x y soft z 


   

 (3.6)

With xi being the predictors of observation i, yi being

a one-hot encoded vector where the correct label of

observation i is coded as 1 and the rest are 0 and _ are the

current parameters of the model. It reduces to the negative

logarithm of the probability assigned to the correct class by

the softmax function. Thus, it penalizes the model for

assigning high probabilities to incorrect classes. Correct

guesses, especially when assigned probabilities close to 1, will

yield a low loss. The task of optimizing the classifier can then

be described in equation form as

 
1

1ˆ arg min , ,
n

i i

i

L x y
n

 


 

 (3.7)

A text can be considered as a sequence of words

which might have dependencies between them. A long short

term memory (LSTM) network is a type of recurrent neural

IJSART - Volume 7 Issue 1 – JANUARY 2021 ISSN [ONLINE]: 2395-1052

Page | 56 www.ijsart.com

network (RNN) that have long term dependencies between

time steps of sequential data. In this work, LSTM neural

network has been used to learn and use long term

dependencies fro classification of text data. To input is a text

file applied to an LSTM network. First the text data has been

converted into numeric sequences. This has been achieved by

using a word encoding which maps documents to sequences of

numeric indices. To achieve better results a word embedding

layer has been included in the network. Word embeddings has

been used to map words in a vocabulary to numeric vectors

rather than scalar indices. These embeddings have captured

semantic details of the words and will result in generation of

words which have similar meanings to have similar vectors.

This has also helped into modeling relationships between

words through vector arithmetic. The simulation work has

been classified into four major steps:

a) Import and preprocess the data.

b) Convert the words to numeric sequences using a

word encoding.

c) Create and train an LSTM network with a word

embedding layer.

d) Classify new text data using the trained LSTM

network.

Table 4.1: Factory Data in Tabular Form after Labeling

and Categorization

Items are occasionally

getting stuck in the

scanner tools

Mechanica

l Failure Medium

Readjust

Machine 45

Loud rattling and

banging sounds are

coming from assembler

pistons

Mechanica

l Failure Medium

Readjust

Machine 35

There are cuts to the

power when starting the

plant

Electronic

Failure High

Full

Replace

ment 16200

Fried capacitors in the

assembler

Electronic

Failure High

Replace

Compon

ents 352

Mixer tripped the fuses

Electronic

Failure Low

Add to

Watch

list 55

Burst pipe in the

constructing agent is

spraying coolant Leak High

Replace

Compon

ents 371

A fuse is blown in the

mixer.

Electronic

Failure Low

Replace

Compon

ents 441

Things continue to

tumble off of the belt

Mechanica

l Failure Low

Readjust

Machine 38

IV. RESULTS AND DISCUSSIONS

The events in the data has been classified by the

labeling it. Then the data is partitioned into a training partition

and has been held-out the partition for validation and testing.

The holdout percentage has been taken as 10%. To check that

the data has been imported correctly, the training text data has

been visualized using a word cloud.

The data has been tokenized and preprocessed using the

following three steps:

 Tokenize the text using “tokenized Document”.

 Convert the text to lowercase using “lower”.

 Erase the punctuation using “erase Punctuation”.

To input the documents into an LSTM network, word

encoding has been used to convert the documents into

sequences of numeric indices. Then the documents have been

padded and truncate to make them of same length. To pad and

truncate the documents, first a target length has been chossen,

and then truncate the documents that are longer than it and

left-pad documents that are shorter than it. For best results, the

target length should be short without discarding large amounts

of data. To find a suitable target length, a histogram of the

training document lengths shown in Figure 4.3 is simulated.

As most of the training documents have fewer than 11 tokens.

So, we have used 11 as the target length for truncation and

padding.

Figure 4.3: Histogram to Decide for Target Length

The final and most important step is to develop the

LSTM network architecture. To input sequence data into the

network we have used an input layer size of 1. The size of

second layer of neurons has been taken as 70. This layer is a

word embedding layer and has the same number of words as

the word encoding. Then the number of hidden neurons has

been set as 100. Lastly, to use the LSTM layer for a sequence

to label classification problem the output mode has been set as

“last”.

IJSART - Volume 7 Issue 1 – JANUARY 2021 ISSN [ONLINE]: 2395-1052

Page | 57 www.ijsart.com

Figure 4.4: LSTM Network Training

To predict and testing the accuracy of the trained

LSTM network, a test data has been used with the event type

classified into three new reports. The string array containing

the new reports has been created as shown:

 "Coolant is pooling underneath sorter."

 "Sorter blows fuses at start up."

 "There are some very loud rattling sounds coming from the

assembler."

The text data has been preprocessed using the

preprocessing steps as done during training the documents.

The text data has been converted into sequences with the same

options as done during the training sequences process. Then

the new sequences have been classified using the trained

LSTM network. The following classifications have been

obtained from the testing data:

 Leak

 Electronic Failure

 Mechanical Failure

From the classification results it has been concluded

that LSTM network has classified the tesing data with 100%

accuracy.

V. CONCLUSION

In the presented work the technique classify text

using LSTM with variant number of words that have been

grouped to be used as input features. LSTM techniques

improves gesture recognition accuracy and minimizes the

false-positive rate as well as the time complexity

REFRENCES

[1] J. Wang et al., “Spatiotemporal Modeling and Prediction

in Cellular Networks: A Big Data Enabled Deep Learning

Approach,” Proc. 36th IEEE INFOCOM, Atlanta, GA,

USA, May 2017, pp. 1–9.

[2] A. Alahi et al., “Social LSTM: Human Trajectory

Prediction in Crowded Spaces,” Proc. 29th CVPR, Las

Vegas, NV, USA, June 2016, pp. 961–71.

[3] N. I. Sapankevych and R. Sankar, “Time Series Prediction

Using Support Vector Machines: A Survey,” IEEE

Comput. Intell. Mag., vol. 4, no. 2, May 2009, pp. 24–38.

[4] W.-C. Hong, “Application of Seasonal SVR with Chaotic

Immune Algorithm in Traffic Flow Forecasting,” Neural

Computing and Applications, vol. 21, no. 3, Apr. 2012,

pp. 583–93.

[5] Frolova D, Stern H, Berman S (2013) Most probable

longest common subsequence for recognition of gesture

character input. IEEE Trans Cybern 43(3):871–880.

[6] Gao L, Bourke A, Nelson J (2014) Evaluation of

accelerometer based multi-sensor versus single-sensor

activity recognition systems. Med Eng Phys 36(6):779–

785

[7] Goyal M, Shahi B, Prema K, Reddy NS (2017)

Performance analysis of human gesture recognition

techniques. In: 2017 2nd IEEE international conference

on recent trends in electronics, information and

communication technology (RTEICT), IEEE, pp 111–115

