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Abstract- Studies show that a Long Short-Term Memory 
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accuracy. In this paper text data classification using deep 
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I. INTRODUCTION 

 

 To label different types of text documents is both 

important and desirable. There are plenty of different 

situations where this is useful. Automating these tasks is 

therefore something of great value if the automated system 

performs on a par with, or better than, humans. Labelling 

essays with grades is an example of a task that is time 

consuming but also important, which is why a lot of research 

has been put into Automated Essay Scoring [1]. Removing 

posts from social media platforms which are against the terms 

of use or illegal such as hate speech or threats of physical 

violence is another case where automation, if done right, 

would be beneficial. Automated labelling of texts can also be 

useful in other cases. Classifying e-mails as spam, classifying 

reviews as either positive or negative and assigning topics to 

Wikipedia articles [2] are more examples of useful 

applications. When assigning topics to Wikipedia articles, the 

number of target classes is larger. The literature makes a 

distinction between the case when the target classes are binary 

and when there are several possible target classes, where the 

latter problem is more complex. A different text classification 

task is when a document can be labelled with several labels. 

This is referred to as a multi-label classification task. If the 

label-space is very big, the task becomes an extreme multi-

label classification task (XMTC). An example of such a 

problem is the challenge proposed by [3]. The objective of this 

task was to assign several Medical Subject Headings, also 

known as MeSH, to new PubMed large database of medical 

articles documents. Text classification tasks can be 

summarized as four different types: one out of two classes, 

one out of multiple classes, several labels out of a limited 

number of labels and several labels out of extremely many 

labels [4]. Previously, there has not been any papers which 

deal with more than about 50 classes in a deep learning 

framework. The data used in this thesis has over 1000 target 

classes which makes this type of classification problem 

uncharted territory. The objective of the thesis is to investigate 

the performance of a neural network transfer learning 

technique, known as ULMFiT [5], on a task similar to the 

second type; to determine which one class out of multiple 

classes that a text belongs to. This can be thought of as a fifth 

category of text classification task; a highly multiclass 

classification task. In the next section there will be an 

overview of related work. Then, the data and method will be 

introduced. A benchmark classifier will be constructed for 

comparison purposes. Lastly, an implementation of ULMFiT 

on a highly multiclass classification task was presented along 

with results and a conclusion.  

 

II. TEXT CLASSIFICATION TECHNIQUES 

 

Various text classification techniques were initially 

identified through Wikipedia and other encyclopedias and 

corroborated with the content of various research articles. The 

major approaches were further arranged as a tree structure 

after analyzing the similarities and differences among these 

various approaches along with their respective algorithms. 

Generally, a classification technique could be divided into 

statistical and machine learning (ML) approaches. Statistical 

techniques purely satisfy the proclaimed hypotheses manually, 

therefore the need for algorithms is little, but ML techniques 

were specially invented for automation [6]. 

 

Fig 1. Shows text classification techniques 
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2.1 Statistical Approach  

 

Statistical techniques are purely mathematical 

processes, and they act as the mathematical foundation for all 

other text classifiers. It works similar to a computer program, 

executing the given instructions without any ability of its own. 

 

2.2 Machine Learning Approach  

 

The increase in data volume, velocity, and variety 

called for automation in text processing techniques including 

text classification. In some situations, defining a set of logical 

rules using knowledge-engineering techniques and based on 

expert opinions to classify documents helps to automate the 

classification task. Text classification could be divided into 

three categories: supervised text classifica-tion, unsupervised 

text classification, and semi-supervised text classification 

based on the learning principle followed by the data model [7].  

In machine learning terminology, the classification problem 

comes under the supervised learning principle, where the 

system is trained and tested on the knowledge about classes 

before the actual classification process. Unsupervised learning 

occurs when labeled data is not accessible. The process is 

complicated and has performance issues. 

 

2.1.1Supervised learning  

 

Supervised learning is the most expensive and highly 

difficult of the three. The main reason behind this notion is 

that it requires a human intervention while assigning labels to 

classes which is not pos-sible in large datasets. Though the 

work flow mimics the techniques followed in AI processes, it 

is time consuming. It is also called inductive learning in ML 

[8]. Supervised learning becomes expensive when different 

data distributions, different outputs and different feature 

spaces occur as in heterogeneous text corpora. One of the most 

widely used supervised methods is maximum likelihood 

estimation  

 

2.1.2 Unsupervised learning  

 

Unsupervised learning is a type of ML algorithm 

where, inferences are drawn from the data by clus-tering data 

into different clusters without labeled responses i.e. expected 

outcomes. In other words, no training data is provided to the 

system. It appears complex initially, but when more data is fed 

into the model, the algorithm refines itself to efficiency. 

Principal component analysis, clustering and self-organizing 

maps are frequently used in unsupervised learning. In many 

scenarios clustering is the same as unsupervised learning. 

Many times, expert knowledge required to label the samples is 

either non-existent or inadequate. In such case, self-organizing 

maps and correlation coefficient are used to cluster the 

documents and use it to label the documents for further 

classification [9]. It eliminates the curse of dimensionality and 

expert intervention as well. This kind of hybrid model is more 

suitable for high volume data. 

 

2.1.3 Semi Supervised Learning  

 

Semi-supervised learning is a combination of 

supervised and unsupervised learning techniques. This type of 

learning employs small amount of labeled data and large 

amount of unlabeled data for train-ing. The labels are assigned 

by combining labeled and unlabeled instances, as unlabeled 

data mitigate the effect of insufficient labeled data on 

classifier accuracy. Some of the SSL techniques are such as 

self-training or self-teaching or bootstrapping, co-training, 

transductive SVMs, generative models and graph-based 

methods. Vector space models are mostly used in language 

processing problems to address natural language semantics 

that supposes words in similar contexts have similar meanings. 

Meaning values are calcu-lated according to the Helmholtz 

principle. This model is non-iterative but effective in 

augmenting the efficiency of classifier. The system can be 

combined with semantic kernels that smooth docu-ment term 

vectors using term to term semantic relations. 

 

III. NEURAL NETWORKS IN MACHINE LEARNING 

 

Artificial neural networks (ANNs) work in the same 

way as human brain in arriving at a decision. Swarm 

intelligence and evolution algorithm are used to generalize a 

neural network model. It works on the virtue of learning and 

evolution with minimal or no human intervention. For data 

classification, competitive co-evolution algorithm based 

neural network model is suggested. Radial Basis Function is 

the ANN component as it employs faster learning algorithms. 

It has a compact network architecture that increases 

classification accuracy. Also, evolutionary algorithms have a 

tendency to perform well in dynamic environments by 

learning rules on the fly and highly adaptive of ‘fuzzy’ 

characteristics.  Neural networks are also popular among cases 

where a hierarchical multi-label classification approach is 

required. A popular way to approach different tasks in NLP is 

to use a Long Short-Term Memory Recurrent Neural Network. 

The strength of the LSTM is that it can capture information in 

any part of the document.A simplified structure of the two-

layer, feed-forward network can be seen in Fig. 2 It takes 

1 2

T

px x x x   K
 as input vector and produces 

 1 2

T

kz z z z K
 as output vector where p is the number of 

variables and K  the number of classes. In this network, the 



IJSART - Volume 7 Issue 1 – JANUARY 2021                                                                                  ISSN  [ONLINE]: 2395-1052 
 

Page | 54                                                                                                                                                                       www.ijsart.com 

 

input x is transformed into z  through one layer of hidden 

units and activation functions. 

 

 
Figure 2 A feed-forward neural network with three input 

variables, four hidden units and two output variables. 

The intercept is represented by 

 1
0 0 1x h 

. The 

arrows between the nodes are the weights and there are also 

activation functions between the layers but they are not visible 

in this simplified illustration. In the following equations, the 

Rectified Linear Unit (Nair and Hinton 2010) activation 

function is used. It is defined as 
   max 0,x x 

 and 

introduces non-linearity into the network. The hidden units are 

then defined as 

 

        1 1 1 1

0 1 1 2 2 1,2, , .i i i i ip ph x x x i M       K K

      (1) 

 

which is a linear function of the input variables put 

through the ReLU activation function. M . is the number of 

hidden units in this layer. They can also be written in matrix 

notation 

    1 1
h b x  

     
     (2) 

 

where
 1 2

T

Mh h h h K
 is the vector of hidden units and 
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is the weight matrix and vector of intercepts used to transform 

the input into hidden units. The superscript refers to that this 

weight matrix and intercept vector corresponds to the first 

layer in the network. In the two-layer example, the output is 

expressed as a function of the hidden units as  

 

       2 2 2 2

0 1 1 2 2 , 1,2, , .i i i i iM Mz h h h i K      K K
 

     (3) 

In matrix notation 

 

   2 2
z b h 

 
(4) 

 

Where 
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and M and K  are the number of hidden units and output 

classes respectively. To extend this two-layer network into a 

deep neural network with L  layers it can be represented in 

matrix notation as 

 

      
        
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L
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 

 

 


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



 

 

 

 

M

    
      (5) 

Note that the ReLU is not used when generating z , 

instead, if the network is trained for classification, z  is put 

through a softmax activation to convert the values into 

probabilities. The softmax is defined as 

 



IJSART - Volume 7 Issue 1 – JANUARY 2021                                                                                  ISSN  [ONLINE]: 2395-1052 
 

Page | 55                                                                                                                                                                       www.ijsart.com 

 

  1 2

1

1
max K

j

T
z z z

K z

j

soft x e e e
e



   


K

  
     (6) 

 

The softmax function will assign values close to one 

for the largest iz
 and close to zero for all others, unless the 

largest and second largest are very close. 

3.1Training a Neural Network 

 

When training a machine learning model one wants 

to find the parameter values which minimize a loss function. 

Given the model 

 

y X 
      

     (3.1) 

 

a closed form solution that minimizes the MSE loss function 

can be directly calculated as 

 

 
1ˆ T TX X X y



     

     (3.2) 

 

If the amount of parameters is extremely large, one 

could instead use an algorithm called Gradient Descent. The 

gradient descent method, when applied to linear regression, 

tries to minimize an appropriate loss function, e.g. MSE. To 

make the partial derivatives look nicer we define a slightly 

modified MSE as 

 

      
2
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1
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     (3.3) 

 

Gradient descent then takes the partial derivatives in each 

iteration with regard to all 
ˆ

j
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
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     (3.4) 

Then it will update all parameters simultaneously with 

learning rate 
0 

 such that 

 

          

1

1ˆ ˆ ˆ , 1,2 .
n

new old i i i

j j j

i

y y x j p
n

  


    K

 
     (3.5) 

This update scheme is repeated until the difference 

between loss functions between iterations is sufficiently small. 

Then we can say that the loss function, which in this case is 

convex, has converged to its global minimum Deep neural 

networks often have millions of parameters and sometimes 

billions. The gradient can therefore not be calculated for all 

parameters and observations every time. Luckily, gradients 

between subsets of the data are often similar [24]. Therefore, it 

is possible to split the dataset into mini-batches and then 

calculate the gradient on each mini-batch.  

 

The size of the mini-batches is determined by the 

memory in the computers GPU and is often somewhere 

between 32 and 256 [25]. The calculation of gradients is done 

with back-propagation [26]. Optimizing the parameter values 

through calculating gradients on mini-batches is known as 

Stochastic Gradient Descent (SGD). The parameters are 

updated in a similar manner to Equation 3.5  but n is replaced 

by the mini-batch size. When applying SGD with an adaptive 

learning rate scheme and adaptive momentum, the 

optimization algorithm must be able to handle this. The Adam 

optimizer [27] is a common choice under these circumstances 

since it is fast and can handle the adaptive learning rate and 

momentum scheme. Therefore, the Adam optimizer will be 

used in this thesis. When training a neural network for 

classification, the MSE loss function, described in Equation 

3.5, is replaced by another loss function known as cross-

entropy loss. It is defined as 

 

       
1

, , log ; log max
K

T

i i ik i i i

k

L x y y p k x y soft z 


   
 

   (3.6) 

 

With xi being the predictors of observation i, yi being 

a one-hot encoded vector where the correct label of 

observation i is coded as 1 and the rest are 0 and _ are the 

current parameters of the model. It reduces to the negative 

logarithm of the probability assigned to the correct class by 

the softmax function. Thus, it penalizes the model for 

assigning high probabilities to incorrect classes. Correct 

guesses, especially when assigned probabilities close to 1, will 

yield a low loss. The task of optimizing the classifier can then 

be described in equation form as  

 

 
1

1ˆ arg min , ,
n

i i

i

L x y
n

 


 
   

     (3.7) 

 

A text can be considered as a sequence of words 

which might have dependencies between them. A long short 

term memory (LSTM) network is a type of recurrent neural 
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network (RNN) that have long term dependencies between 

time steps of sequential data. In this work, LSTM neural 

network has been used to learn and use long term 

dependencies fro classification of text data. To input is a text 

file applied to an LSTM network. First the text data has been 

converted into numeric sequences. This has been achieved by 

using a word encoding which maps documents to sequences of 

numeric indices. To achieve better results a word embedding 

layer has been included in the network. Word embeddings has 

been used to map words in a vocabulary to numeric vectors 

rather than scalar indices. These embeddings have captured 

semantic details of the words and will result in generation of 

words which have similar meanings to have similar vectors. 

This has also helped into modeling relationships between 

words through vector arithmetic. The simulation work has 

been classified into four major steps: 

 

a) Import and preprocess the data. 

b) Convert the words to numeric sequences using a 

word encoding. 

c) Create and train an LSTM network with a word 

embedding layer. 

d) Classify new text data using the trained LSTM 

network. 

 

Table 4.1: Factory Data in Tabular Form after Labeling 

and Categorization 

Items are occasionally 

getting stuck in the 

scanner tools  

Mechanica

l Failure   Medium 

Readjust 

Machine 45 

Loud rattling and 

banging sounds are 

coming from assembler 

pistons    

Mechanica

l Failure   Medium 

Readjust 

Machine 35 

There are cuts to the 

power when starting the 

plant    

Electronic 

Failure     High 

Full 

Replace

ment 16200 

Fried capacitors in the 

assembler 

Electronic 

Failure    High 

Replace 

Compon

ents 352 

Mixer tripped the fuses                                     

Electronic 

Failure   Low 

Add to 

Watch 

list 55 

Burst pipe in the 

constructing agent is 

spraying coolant            Leak             High 

Replace 

Compon

ents 371 

A fuse is blown in the 

mixer.  

Electronic 

Failure  Low 

Replace 

Compon

ents 441 

Things continue to 

tumble off of the belt                           

Mechanica

l Failure Low 

Readjust 

Machine 38 

 

IV. RESULTS AND DISCUSSIONS 

 

The events in the data has been classified by the 

labeling it. Then the data is partitioned into a training partition 

and has been held-out the partition for validation and testing. 

The holdout percentage has been taken as 10%. To check that 

the data has been imported correctly, the training text data has 

been visualized using a word cloud. 

 

The data has been tokenized and preprocessed using the 

following three steps:  

 

 Tokenize the text using “tokenized Document”. 

 Convert the text to lowercase using “lower”. 

 Erase the punctuation using “erase Punctuation”. 

 

To input the documents into an LSTM network, word 

encoding has been used to convert the documents into 

sequences of numeric indices. Then the documents have been 

padded and truncate to make them of same length. To pad and 

truncate the documents, first a target length has been chossen, 

and then truncate the documents that are longer than it and 

left-pad documents that are shorter than it. For best results, the 

target length should be short without discarding large amounts 

of data. To find a suitable target length, a histogram of the 

training document lengths shown in Figure 4.3 is simulated. 

As most of the training documents have fewer than 11 tokens. 

So, we have used 11 as the target length for truncation and 

padding. 

 

 
Figure 4.3: Histogram to Decide for Target Length 

 

The final and most important step is to develop the 

LSTM network architecture. To input sequence data into the 

network we have used an input layer size of 1. The size of 

second layer of neurons has been taken as 70. This layer is a 

word embedding layer and has the same number of words as 

the word encoding. Then the number of hidden neurons has 

been set as 100. Lastly, to use the LSTM layer for a sequence 

to label classification problem the output mode has been set as 

“last”.  
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Figure 4.4: LSTM Network Training 

 

To predict and testing the accuracy of the trained 

LSTM network, a test data has been used with the event type 

classified into three new reports. The string array containing 

the new reports has been created as shown: 

 

    "Coolant is pooling underneath sorter." 

    "Sorter blows fuses at start up." 

    "There are some very loud rattling sounds coming from the 

assembler." 

 

The text data has been preprocessed using the 

preprocessing steps as done during training the documents. 

The text data has been converted into sequences with the same 

options as done during the training sequences process. Then 

the new sequences have been classified using the trained 

LSTM network. The following classifications have been 

obtained from the testing data: 

 Leak  

 Electronic Failure  

 Mechanical Failure  

 

From the classification results it has been concluded 

that LSTM network has classified the tesing data with 100% 

accuracy.  

 

V. CONCLUSION 

 

In the presented work the technique classify text 

using LSTM with variant number of words that have been 

grouped to be used as input features. LSTM techniques 

improves gesture recognition accuracy and minimizes the 

false-positive rate as well as the time complexity 
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