Boundary Conformal Volume And The First Steklov Eigenvalue

Mohammed Nour¹, A.Rabih²

^{1, 2} Dept of Mathematic

¹College of science and Arts in UglatAsugour, Qassim university, Buraydah, Kingdom of Saudi Arabia. ²Bakht El-ruda University, Eddwaim, Sudan

Abstract- In this paper we give an overview results abut the boundary conformal volume of k- dimensional Riemannian manifold with nonempty boundary $\partial \Sigma$. we give an estimates for the first eigenvalue of the Dirichlet-to-Neumann map. we prove that the boundary n- conformal volume $\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \leq 2\pi$ and $\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \leq L^2/2A$ were φ is a conformal map from the surfaces Σ to the unit ball B^n in \mathbb{R}^n we also showing that for $\in > \operatorname{OVol}_{rc}(\Sigma, n) \geq \operatorname{Vol}_{rc}(\Sigma, n+\epsilon)$

I. INTRODUCTION

In this paper develop a theory which we call boundary and relative conformal volume because it issimilar to the conformal volumetheory of Li and Yau [4] exceptingthat the boundarybe an essential role in this theory. Using the Gauss-Bonnet Theorem with boundary weshow (Theorem 2.2) that when k = 2, a free boundary solution has boundary length which is a maximum over the boundary lengths of its conformal images in the ball. We use this toshow (Theorem 2.3) that any free boundary solution has area at least π . We understandthat this inequality is equivalent to the sharp isoperimetric inequality for free boundary surfaces. We define the boundary conformal volume to be the Li-Yau conformal volume of the boundary submanifold.

We then proceed to define a relative conformal volume for manifolds Σ which accept proper conformal immersions into the unit ball. We take the maximum volume of the conformal images of a given immersion, and then minimize over conformal immersions. We show that the relative conformal volume gives a general upper bound on the first nonzero Steklov eigenvalue over all conformal metrics on Σ . Specifically we show for any k the general upper bound on $\sigma_1 \operatorname{Vol}(\partial \Sigma)(\operatorname{Vol}(\Sigma))^{(2-k)/2}$ in terms of the relative conformal volume. For k = 2 this reduces to the bound $\sigma_1 \cdot L(\partial \Sigma) \leq 2\operatorname{Vol}_{rc}(\Sigma, n)$.

II. BOUNDARY CONFORMAL VOLUME

Let (Σ^k, g) be a k-dimensional compact Riemaniann manifold with boundary $\partial \Sigma \neq \emptyset$, and let B^n be the unit ball in \mathbb{R}^n . suppose that Σ admits a conformal map $\varphi: \Sigma \to B^n$ with $\varphi(\partial \Sigma) \subset \partial B^n$. Let G be the group of conformal diffeomorphisms of B^n . We define the boundary conformal volume to be the Li-Yau [4] conformal volume of the boundary submanifold $\partial \Sigma$.

Definition 2.1. Given a map $\varphi \in C^1(\partial \Sigma, \partial B^n)$ that admits a conformal extension $\varphi: \Sigma \to B^n$, define the boundary n_- conformal volume of φ by.

$$\operatorname{Vol}_{bc}(\Sigma, n, \varphi) = \sup_{f \in G} \operatorname{Vol}(f(\varphi(\partial \Sigma))).$$

The boundary n-conformal volume of Σ is then defined to be.

$$\operatorname{Vol}_{bc}(\Sigma, n) = \inf_{\varphi} \operatorname{Vol}_{bc}(\Sigma, n, \varphi).$$

where the infimum is over all $\varphi \in C^1(\partial \Sigma, \partial B^n)$ that admit conformal extensions $\varphi \colon \Sigma \to B^n$. It can be shown that $\operatorname{Vol}_{bc}(\Sigma, n) \ge \operatorname{Vol}_{bc}(\Sigma, n + 1)$. The boundary conformal volume of Σ is defined to be.

$$\operatorname{Vol}_{bc}(\Sigma) = \lim_{n \to \infty} \operatorname{Vol}_{bc}(\Sigma, n).$$

Note that: For any k-dimensional manifold Σ with boundary, the boundary n-conformal volume of Σ is bounded below by the volume of the (k-1)-dimensional sphere:

$$\operatorname{Vol}_{bc}(\Sigma, n) \ge \operatorname{Vol}(\mathbb{S}^{k-1}).$$

IJSART - Volume 6 Issue 11 -NOVEMBER 2020

The proof is as in [4]; given a point θ on \mathbb{S}^{n-1} , let $f_{\theta}(t)$ be the one parameter subgroup of the group of conformal diffeomorphisms of the sphere generated by the gradient of the linear functions of \mathbb{R}^n in the direction θ . For all $t, f_{\theta}(t)$ fixes the points $\theta_{\text{and}} -\theta$, and $\lim_{t\to\infty} f_{\theta}(t)(x) = \theta$ for all $x \in \mathbb{S}^{n-1} \setminus \{-\theta\}$. If $\varphi: \partial \Sigma \to \mathbb{S}^{n-1}$ is a map whose differential has rank k-1 at x, then.

$$\lim_{t \to \infty} \operatorname{Vol}\left(f_{-\varphi(x)}(t)(\varphi(\partial \Sigma))\right) = m \operatorname{Vol}(\mathbb{S}^{k-1})$$

for some $m \in \mathbb{Z}^+$ (here the integer m is the multiplicity of the immersed submanifold $\partial \Sigma$ at the point $-\theta$).

For k = 2 and for a minimal surface Σ that is a solution to the free boundary problem in the unit ball B^n in \mathbb{R}^n , the boundary *n*-conformal volume of Σ is the length of the boundary of Σ ; that is, its boundary length is maximal in its conformal orbit.

Theorem 2.2. Let Σ a minimal surface in B^n , with nonempty boundary $\partial \Sigma \subset \partial B^n$, and meeting ∂B^n orthogonally along $\partial \Sigma$, given by the isometric immersion $\varphi \colon \Sigma \to B^n$. Then. $\operatorname{Vol}_{bc}(\Sigma, n, \varphi) = L(\partial \Sigma)$,

The length of the boundary of Σ .

Proof. The trace-free second fundamental form $\left\|A - \frac{1}{2}(Tr_{g}A)g\right\|^{2} dV_{g} \text{ is conformally invariant for surfaces. Using the Gauss equation we have}$ $2 \left\|A - \frac{1}{2}(Tr_{g}A)g\right\|^{2} = H^{2} - 4K$. Therefore, given any $f \in G$,

$$\int_{\Sigma} (H^2 - 4K) da = \int_{f(\Sigma)} (\widetilde{H}^2 - 4\widetilde{K}) d\widetilde{a},$$

Where $d\tilde{a}$ denotes the induced area element on $f(\Sigma)_{, \text{ and }} \tilde{K}_{, \text{ and }} \tilde{H}_{, \text{ denote the Gauss and mean curvatures of }} f(\Sigma)_{\text{ in }} \mathbb{R}^{n}_{. \text{ Since }} \Sigma_{\text{ is minimal}}, H = 0_{, \text{ and so we have.}}$

$$-4\int_{\Sigma} K \, da = \int_{f(\Sigma)} \widetilde{H}^2 \, d\widetilde{a} - 4\int_{f(\Sigma)} \widetilde{K} \, d\widetilde{a}.(1)$$

By the Gauss-Bonnet Theorem,

$$\int_{\Sigma} K \, da = 2\pi \chi(\Sigma) - \int_{\partial \Sigma} k \, ds$$
$$\int_{f(\Sigma)} \tilde{K} \, da = 2\pi \chi \big(f(\Sigma) \big) - \int_{\partial f(\Sigma)} \tilde{k} \, ds,$$

and using this in (1), since $\chi(\Sigma) = \chi(f(\Sigma))$, we obtain

$$4\int_{\partial\Sigma} k \, ds = \int_{f(\Sigma)} \tilde{H}^2 \, d\tilde{a} + 4\int_{\partial f(\Sigma)} \tilde{k} \, d\tilde{s} \, (2)$$
$$\geq 4\int_{\partial f(\Sigma)} \tilde{k} \, d\tilde{s}$$

If T is the oriented unit tangent vector of $\partial \Sigma_{and} \nu$ is the inward unit conormal vectoralong $\partial \Sigma$, then.

$$k = \langle \frac{dT}{ds}, v \rangle = -\langle T, \frac{dv}{ds} \rangle = \langle T, \frac{d\varphi}{ds} \rangle = \langle T, T \rangle = 1,$$

where in the third to last equality we have used the fact that $v = -\varphi$ since Σ meets ∂B^n orthogonally along $\partial \Sigma$ Since f is conformal, $f(\Sigma)$ also meets ∂B^n orthogonally along $\partial f(\Sigma)$, and so we also have that $\tilde{k} = 1$. Using this in (2) we obtain.

$$L(\partial \Sigma) \ge L(\partial f(\Sigma)).$$

This shows that

$$L(\partial \Sigma) \geq \operatorname{Vol}_{bc}(\Sigma, n, \varphi)$$

as claimed.

The proof of Theorem2.2meanthat any minimal surface that is a solution to the free boundary problem in the unit ball in \mathbb{R}^n has area greater than or equal to that of a flat equatorial disk solution.

Theorem 2.3 Let Σ be a minimal surface in B^n , with (nonempty) boundary $\partial \Sigma \subset \partial B^n$, and meeting ∂B^n orthogonally along $\partial \Sigma$. Then.

$$2A(\Sigma) = L(\partial \Sigma) \ge 2\pi$$

Proof.Given $f \in G$, as in the proof Theorem 2.2, we have.

$$L(\partial \Sigma) \ge L(\partial f(\Sigma)). \tag{3}$$

Since Σ is minimal, the coordinate functions are harmonic $\Delta_{\Sigma} x^{i} = 0$, and $\Delta_{\Sigma} |x|^{2} = 4$. Therefore,

$$4A(\Sigma) = \int_{\Sigma} \Delta_{\Sigma} |x|^2 \, da = \int_{\partial \Sigma} \frac{\partial |x|^2}{\partial v} ds = \int_{\partial \Sigma} 2 \, ds = 2L(\partial \Sigma).$$

Using this in (3) gives.

$$2A(\Sigma) \ge L(\partial f(\Sigma))$$

If $p \in \partial \Sigma$, then as in Remark 5.2. of [1],

$$\lim_{t \to \infty} L\left(f_p(t)(\partial \Sigma)\right) = mL(\mathbb{S}^1) = 2\pi m$$

For some $m \in \mathbb{Z}^+$, and so, we have the desired conclusion.

$$2A(\Sigma) = L(\partial \Sigma) \ge 2\pi.$$

Corollary 2.4. The sharp isoperimetric inequality holds for free boundary minimal surfaces in the ball:

$$A \leq \frac{L^2}{4\pi}$$

Proof. For free boundary minimal surfaces in the ball we have $2A(\Sigma) = L(\partial \Sigma)$, as shown in the proof of Theorem 2.3. It follows that the inequality $A(\Sigma) \ge \pi$ is equivalent to the sharp isoperimetric inequality $A \le L^2/4\pi$.

Corollary 2.5. Show that

(i)
$$\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \le 2\pi$$

(ii) $\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \le L^2/2A$

Proof.(i) Theorem 2.2 and Theorem 2.3 shows that

$$\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \leq 2\pi$$
(ii) Since $A \leq \frac{L^2}{4\pi}$ then

$$\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \leq 2\pi \leq \frac{L^2}{4\pi}$$

Definition 2.6. Let Σ be a k-dimensional compact Riemannian manifold with boundary that admits a conformal map $\varphi: \Sigma \to B^n$ with $\varphi(\partial \Sigma) \subset \partial B^n$. Define the relative n-conformal volume of φ by.

$$\operatorname{Vol}_{rc}(\Sigma, n, \varphi) = \sup_{f \in G} \operatorname{Vol}\left(\left(f(\varphi(\Sigma))\right)\right).$$

The relative n-conformal volume of Σ is then defined to be

$$\operatorname{Vol}_{rc}(\Sigma, n) = \inf_{\varphi} \operatorname{Vol}_{rc}(\Sigma, n, \varphi)$$

Where the infimum is over all non-degenerate conformal maps

$$\varphi: \Sigma \to B^n_{\text{with}} \varphi(\partial \Sigma) \subset \partial B^2$$

Lemma 2.7. If $m \ge n$, then $\operatorname{Vol}_{rc}(\Sigma, n) \ge \operatorname{Vol}_{rc}(\Sigma, m)$.

Proof. To see this, suppose $\varphi: \Sigma \to B^n \subset B^m$ is conformal, with $\varphi(\partial \Sigma) \subset \partial B^n \subset \partial B^m$. Let $A = \varphi(\Sigma) \subset B^n$ and suppose that f is a conformal transformation of B^m . Then f(A) lies in the spherical cap $f(B^n)$ in B^m whose boundary lies in ∂B^m . Let $T \in O(m)$ be an orthogonal transformation that rotates this spherical cap so that its boundary lies in an n-plane parallel to the n-plane containing the boundary of the original equatorial B^n . Let P be the conformal projection of $T(f(B^n))$ onto B^n , and let A' = P(T(f(A))). Clearly P is volume increasing, and so.

$$Vol(A') \ge Vol(f(A))$$

But A' is the image of A under some conformal transformation of B^n , therefore.

$$\sup_{F \in G} \operatorname{Vol}(F(A)) \ge \sup_{f \in G'} \operatorname{Vol}(f(A))$$

Where G denotes the group of conformal transformations of B^n , and G' denotes the group of conformal transformations of B^{m}

The relative conformal volume of Σ is defined to be.

$$\operatorname{Vol}_{rc}(\Sigma) = \lim_{n \to \infty} \operatorname{Vol}_{rc}(\Sigma, n)$$

Note that : For any k-dimensional manifold Σ with boundary, the relative n-conformal volume of Σ is bounded below by the volume of the k-dimensional ball:

$$\operatorname{Vol}_{rc}(\Sigma, n) \ge \operatorname{Vol}(B^k)$$

To see this, suppose $\varphi: \Sigma \to B^n$ is a conformal map with $\varphi(\partial \Sigma) \subset \partial B^n$, whose differential has rank k at $x \in \partial \Sigma$. The conformal diffeomorphisms $f_{-\varphi(x)}(t)_{\text{of the sphere (see$ Remark5.2 of [1]), extend to conformal diffeomorphismsof Bⁿ. and.

$$\lim_{t\to\infty} \operatorname{Vol}\left(f_{-\varphi(x)}(t)(\varphi(\Sigma))\right) = m\operatorname{Vol}(B^k)$$

For some $m \in \mathbb{Z}^+$, the multiplicity of $\varphi(\partial \Sigma)_{at} \varphi(x)$.

III. FIRST EIGENVALUE

Now we prove estimates for the first eigenvalue of the Dirichlet-to-Neumann map which are analogs of the estimates of [4] and [3] for the first Neumann eigenvalue of the Laplacian, we also give Relationship between it and conformal volume (see [2]).

Corollary 3.1We Show that
$$\operatorname{Vol}_{rc}(\Sigma, n) \ge \operatorname{Vol}_{rc}(\Sigma, n+\epsilon)_{.}$$

For $\epsilon > 0$ suppose $\varphi: \Sigma \to B_j^n \subset B_j^{n+\epsilon}$ For i = 1, ..., nnal, with $\varphi(\partial \Sigma) \subset B_j^n \subset \partial B_j^{n+\epsilon}$ Let Proof. See [5], [3] Proof. conformal,

ISSN [ONLINE]: 2395-1052

 $A = \varphi(\Sigma) \subset B_j^n$ and suppose that f is a conformal transformation of $B_j^{n+\epsilon}$. Then $\sum_{j=1}^r f(A_j)$ lies in the spherical cap $\sum_{j=1}^{r} f(B_j^n)_{\text{in}} B_j^{n+\epsilon}$. whose boundary lies in $\partial B_j^{n+\epsilon}$. Let $T \in O(m)$ be an orthogonal transformation that rotates this spherical cap so that its boundary lies in an n_{-} plane parallel to the ⁿ-plane containing the boundary of the original equatorial B_j^n . Let P be the conformal projection of $T\left(\sum_{j=1}^{r} f\left(B_{j}^{n}\right)\right)_{\text{onto}}$ B_j^n and let $\sum_{j=1}^{r} A'_{j} = P\left(T\left(\sum_{j=1}^{r} f(A_{j})\right)\right)$. Clearly P is volume increasing, and so.

 $\operatorname{Vol}\left(\sum_{i=1}^{r} A_{j}^{\prime}\right) \ge \operatorname{Vol}\left(\sum_{i=1}^{r} f(A_{j})\right)$

But A'_j is the image of A_j under some conformal transformation of B_j^n . Hence,

$$\sup_{F \in G} \operatorname{Vol}\left(\sum_{j=1}^{r} f(A_j)\right) \ge \sup_{f \in G'} \operatorname{Vol}\left(\sum_{j=1}^{r} f(A_j)\right)$$

Where G is the group of conformal transformations of B_j^n , and G' denotes the group of conformal transformations of $B_i^{n+\epsilon}$

The relative conformal volume of Σ is defined to be.

$$\operatorname{Vol}_{rc}(\Sigma) = \lim_{n \to \infty} \operatorname{Vol}_{rc}(\Sigma, n)$$

Lemma 3.2. Let (M, g) be a compact Riemanian manifold, and let φ be an immersion of $M_{into} \mathbb{S}^{n-1} \subset \mathbb{R}^n$. There exists $f \in G$ such that $\psi = f \circ \varphi = (\psi^1, \dots, \psi^n)$ satisfies.

$$\int_{M} \psi^{i} \, dv_{g} = 0$$

Theorem 3.3. Let (Σ, g) be a compact k-dimensional Riemannian manifold with nonempty boundary. Let $\sigma_1 > 0$ be the first non-zero eigenvalue of the Dirichlet-to-Neumann map on (Σ, g) . Then.

$$\sigma_1 \operatorname{Vol}(\partial \Sigma) \operatorname{Vol}(\Sigma)^{\frac{2-k}{k}} \le k \operatorname{Vol}_{rc}(\Sigma, n)^{\frac{2}{k}}$$

For all n for which $\operatorname{Vol}_{rc}(\Sigma, n)$ is defined (i.e. such that there exists a conformal mapping $\varphi: \Sigma \to B^n$ with $\varphi(\partial \Sigma) \subset \partial B^n$). Equality implies that there exists a conformal harmonic map $\varphi: \Sigma \to B^n$ which (after rescaling the metric g) is an isometry on $\partial \Sigma$, with $\varphi(\partial \Sigma) \subset \partial B^n$ and such that $\varphi(\Sigma)$ meets ∂B^n orthogonally along $\varphi(\partial \Sigma)$. For k > 2 this map is an isometric minimal immersion of Σ to its image. Moreover, the immersion is given by a subspace of the first eigenspace.

The following is an immediate consequence of the theorem.

Corollary 3.4. Let Σ be a compact surface with nonempty boundary and metric g. Let $\sigma_1 > 0$ be the first non-zero eigenvalue of the Dirichlet-to-Neumann map on (Σ, g) . Then $\sigma_1 L(\partial \Sigma) \leq 2 \operatorname{Vol}_{rc}(\Sigma, n)$

for all n for which $\operatorname{Vol}_{rc}(\Sigma, n)$ is defined. Equality implies that there exists a conformal minimal immersion $\varphi: \Sigma \to B^n$ by first eigenfunctions which (after rescaling the metric) is anisometry on $\partial \Sigma$, with $\varphi(\partial \Sigma) \subset \partial B^n$ and such that $\varphi(\Sigma)$ meets ∂B^n orthogonally along $\varphi(\partial \Sigma)$.

Proof. Let $\varphi: \Sigma \to B^n$ be a conformal map with $\varphi(\partial \Sigma) \subset \partial B^n$. By Lemma 3.2 we can assume that $\varphi = (\varphi^1, \dots, \varphi^n)$ satisfies

$$\int_{\partial \Sigma} \varphi^i \, ds = 0$$

for $i = 1, ..., n_{\text{Let}} \hat{\varphi}^i$ be a harmonic extension of $\varphi^i |_{\partial \Sigma}$. Then,

$$\sigma_{1} \leq \frac{\int_{\Sigma} \left| \nabla \hat{\varphi}^{i} \right|^{2} dv_{\Sigma}}{\int_{\partial \Sigma} (\varphi^{i})^{2} dv_{\partial \Sigma}} \leq \frac{\int_{\Sigma} \left| \nabla \varphi^{i} \right|^{2} dv_{\Sigma}}{\int_{\partial \Sigma} (\varphi^{i})^{2} dv_{\partial \Sigma}}.$$
(4)

By Holder's inequality, and since φ is conformal

$$\begin{split} \int_{\Sigma} \sum_{i=1}^{n} \left| \nabla \varphi^{i} \right|^{2} dv_{\Sigma} &\leq \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \left[\int_{\Sigma} \left(\left| \nabla \varphi^{i} \right|^{2} \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{2}{k}} = \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \left[k^{\frac{k}{2}} \operatorname{Vol}(\varphi(T)) \right]^{\frac{2}{k}} \\ &\leq k \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \operatorname{Vol}_{rc}(\Sigma, n, \varphi)^{\frac{2}{k}}. \end{split}$$

On the other hand, since $\varphi(\partial \Sigma) \subset \partial B^n$,

$$\sum_{i=1}^{n} \int_{\partial \Sigma} (\varphi^{i})^{2} dv_{\partial \Sigma} = \int_{\partial \Sigma} dv_{\partial \Sigma} = \operatorname{Vol}(\partial \Sigma).$$

Then by (4) we have.

$$\sigma_1 \operatorname{Vol}(\partial \Sigma) \operatorname{Vol}(\Sigma)^{\frac{2-k}{k}} \leq k \operatorname{Vol}_{rc}(\Sigma, n, \varphi)^{\frac{2}{k}}$$

Since $\operatorname{Vol}_{rc}(\Sigma, n) = \inf_{\varphi} \operatorname{Vol}_{rc}(\Sigma, n, \varphi)_{\text{we get.}}$ $\sigma_1 \operatorname{Vol}(\partial \Sigma) \operatorname{Vol}(\Sigma)^{\frac{2-k}{k}} \leq k \operatorname{Vol}_{rc}(\Sigma, n)^{\frac{2}{k}}.$

Now assume that we have equality, $\sigma_1 \operatorname{Vol}(\partial \Sigma) = k V_{rc}(\Sigma, n)^{2/k} V(\Sigma)^{(k-2)/k}$. Choose a sequence of conformal maps $\varphi: \Sigma \to B^n$ with $\varphi_j(\partial \Sigma) \subset \partial B^n$, such that.

$$\lim_{j\to\infty} \operatorname{Vol}_{rc}(\Sigma, n, \varphi_j) = \operatorname{Vol}_{rc}(\Sigma, n)$$

and by composing with a conformal transformation of the ball we may assume

$$\int_{\partial \Sigma} \varphi_j^i \, ds = 0$$

for all i, j. By changing the order of coordinates, we may assume that

$$\lim_{j \to \infty} \int_{\Sigma} (\varphi_j^i)^2 da \begin{cases} > 0 & i = 1, ..., N \\ = 0 & i = N+1, ..., n \end{cases}$$

We have

$$\begin{split} \sigma_{1} \operatorname{Vol}(\partial \Sigma) &= \sigma_{1} \sum_{i=1}^{n} \int_{\partial \Sigma} (\varphi_{j}^{i})^{2} dv_{\partial \Sigma} \leq \sum_{i=1}^{n} \int_{\Sigma} |\nabla \varphi_{j}^{i}|^{2} dv_{\Sigma} \leq \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \left[\int_{\Sigma} \left(\sum_{i=1}^{n} |\nabla \varphi_{j}^{i}|^{2} \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{k}{2}} \\ &\leq k \operatorname{Vol}_{re} \left(\Sigma, n, \varphi_{j} \right)^{\frac{k}{2}} \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \end{split}$$

Letting $j \to \infty$ and using $\sigma_1 \operatorname{Vol}(\partial \Sigma) = k \operatorname{Vol}_{rc}(\Sigma, n)^{2/k} \operatorname{Vol}(\Sigma)^{(k-2)/k}$ we get

$$\begin{split} \sigma_{1} \operatorname{Vol}(\partial \Sigma) &= \sigma_{1} \lim_{j \to \infty} \sum_{i=1}^{n} \int_{\partial \Sigma} (\varphi_{j}^{i})^{2} dv_{\partial \Sigma} = \lim_{j \to \infty} \sum_{i=1}^{n} \int_{\Sigma} |\nabla \varphi_{j}^{i}|^{2} dv_{\Sigma} = \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \lim_{j \to \infty} \left[\int_{\Sigma} \left(\sum_{i=1}^{n} |\nabla \varphi_{j}^{i}|^{2} \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{k}{2}} \\ &= \sigma_{1} \operatorname{Vol}(\partial \Sigma)(5) \end{split}$$

Therefore, for any fixed $i, \{\varphi_j^i\}$ us a bounded sequence in $W^{1,k}(\Sigma, \mathbb{R})$, and since the inclusion $W^{1,k}(\Sigma, \mathbb{R}) \subset L^2(\Sigma, \mathbb{R})$ is compact, by passing to a subsequence we can assume that $\{\varphi_j^i\}$ converges weakly in $W^{1,k}(\Sigma, \mathbb{R})$, strongly in $L^2(\Sigma, \mathbb{R})$, and point wise a.e., to map $\psi^i \colon \Sigma \to \mathbb{R}$. Clearly $\sum_{i=1}^n (\psi^i)^2 \leq 1$ a.e. on $\Sigma, \sum_{i=1}^n (\psi^i)^2 = 1$ a.e. on $\partial \Sigma$, and $\psi^i = 0$ for i = N + 1, ..., n. Since for all i.

$$\sigma_1 \int_{\partial \Sigma} (\varphi_j^i)^2 dv_{\partial \Sigma} \leq \int_{\Sigma} |\nabla \varphi_j^i|^2 dv_{\Sigma}.$$

And

$$\sigma_{1} \lim_{j \to \infty} \sum_{i=1}^{n} \int_{\partial \Sigma} (\varphi_{j}^{i})^{2} dv_{\partial \Sigma} = \lim_{j \to \infty} \sum_{i=1}^{n} \int_{\Sigma} |\nabla \varphi_{j}^{i}|^{2} dv_{\Sigma},$$

We have

$$\lim_{j\to\infty} \int_{\Sigma} \left| \nabla \varphi_j^i \right|^2 dv_{\Sigma} = \sigma_1 \lim_{j\to\infty} \int_{\partial \Sigma} \left(\varphi_j^i \right)^2 dv_{\partial \Sigma} = \sigma_1 \int_{\partial \Sigma} \left(\psi^i \right)^2 dv_{\partial \Sigma} \quad \leq \int_{\Sigma} \left| \nabla \varphi^i \right|^2 dv_{\Sigma}. \tag{6}$$

On the other hand, $\varphi_j^i \to \psi^i$ weakly in $W^{1,k}(\Sigma, \mathbb{R})$, and so

$$\int_{\Sigma} \left| \nabla \psi^{i} \right|^{2} dv_{\Sigma} \leq \lim_{j \to \infty} \int_{\Sigma} \left| \nabla \varphi^{i}_{j} \right|^{2} dv_{\Sigma}$$

There fore, we must have equality in (6), and so

$$\lim_{j \to \infty} \int_{\Sigma} \left| \nabla \varphi_j^i \right|^2 dv_{\Sigma} = \int_{\Sigma} \left| \nabla \psi^i \right|^2 dv_{\Sigma}$$

which means $\{\varphi_j^i\}_{\text{converges to }} \psi_{\text{strongly in }} W^{1,2}(\Sigma, \mathbb{R})_{.}$ Moreover,

$$\sigma_{1} \int_{\partial \Sigma} (\psi^{i})^{2} dv_{\partial \Sigma} = \int_{\Sigma} \left| \nabla \psi^{i} \right|^{2} dv_{\Sigma}$$

and it follows that $\{\psi_i\}_{i=1}^N$ are first eigenfunctions. In particular, ψ^i is harmonic for i = 1, ..., N. Also, since φ_j is conformal and converges strongly in $W^{1,2}$ to ψ , the map

$$\psi: \Sigma \to B^N$$

$$x \mapsto (\psi^1(x), \dots, \psi^N(x))$$

defines a conformal map. Therefore, $\psi : \Sigma \to B^N_{is}$ conformal and harmonic, with $\psi(\partial \Sigma) \subset \partial B^N_{is}$. Since $\psi(\partial \Sigma) \subset \partial B^N_{and}$

$$\frac{\partial \Psi}{\partial \nu} = \sigma_1 \Psi$$
 (7)

on $\partial \Sigma$ since ψ^i are eigenfunctions, it follows that $\psi(\Sigma)$ meets ∂B^N orthogonally along $\psi(\partial \Sigma)$.

By scaling the metric we can assume that $\sigma_1 = 1$. Then by (7), on $\partial \Sigma$ we have

$$\left|\frac{\partial \psi}{\partial \nu}\right| = |\psi| = 1,$$

and hence ψ is an isometry on $\partial \Sigma$. Finally, for k > 2 we have from (5)

$$\lim_{j\to\infty}\sum_{i=1}^{n}\int_{\Sigma}\left|\nabla\varphi_{j}^{i}\right|^{2}dv_{\Sigma}=\sum_{i=1}^{n}\int_{\Sigma}\left|\nabla\psi^{i}\right|^{2}dv_{\Sigma}=\operatorname{Vol}(\Sigma)^{\frac{k-2}{k}}\lim_{j\to\infty}\left[\int_{\Sigma}\left(\sum_{i=1}^{n}\left|\nabla\varphi_{j}^{i}\right|^{2}\right)^{\frac{k}{2}}dv_{\Sigma}\right]^{\frac{k}{k}}$$

By lower semicontinuity of the norm under weak convergence this implies

$$\int_{\Sigma} |\nabla \psi|^2 dv_{\Sigma} = \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \left[\int_{\Sigma} \left(\sum_{i=1}^n |\nabla \psi^i|^2 \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{2}{k}}$$

IJSART - Volume 6 Issue 11 -NOVEMBER 2020

Now the Holder inequality implies the opposite inequality and thus we have equality in the Holder inequality, which implies $|\nabla \psi|^2$ is constant on Σ , and this constant must be k by the boundary normalization. Since ψ is conformal this implies that ψ is an isometry as claimed.

REFERENCES

- AilanaFraserand RichardSchoen, TheFirstSteklove Eigenvalue, Conformal Geomtry, And Minimal Surfaces, Advances in Mathematics 20 March, 2011Volume 226, Issue 5Pages 4011-4030
- [2] J. Escobar, An isoperimetric inequality and the first Steklov eigenvalue, J. Funct. Anal. 165 (1999),no. 1, 101–116.
- [3] A. El Soufi, S. Ilias, Immersions minimales, premi`erevaleurproper dulaplacien et volume conforme, Math. Ann. 275 (1986), no. 2, 257–267.
- [4] P. Li, S.-T. Yau, A new conformal invariant and its applications to theWillmore conjecture and thefirst eigenvalue of compact surfaces, Invent. Math. 69 (1982), no.2, 269–291.
- [5] J. Hersch, Quatrepropri´et´esisop´erim´etriqes de membranes sph´eriqueshomog`enes, C.R. Acad. Sci.ParisS´er. A-B 270 (1970), A1645–A1648.