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Abstract- In this paper we give an overview results abut the 

boundary conformal volume of - dimensional Riemannian 

manifold with nonempty boundary   . we give an estimates 

for the first eigenvalue of the Dirichlet-to-Neumann map. we 

prove that the boundary - conformal volume 

  and     

were  is a conformal map from the surfaces   to the unit 

ball  in  we also showing that  for 

 . 

 

I. INTRODUCTION 

 

 In this paper develop a theory which we call 

boundary and relative conformal volume because it issimilar  

to the conformal volumetheory of Li and Yau [4] 

exceptingthat the boundarybe an essential role in this theory. 

Using the Gauss-Bonnet Theorem with boundary weshow 

(Theorem 2.2) that when , a free boundary solution 

has boundary length whichis a maximum over the boundary 

lengths of its conformal images in the ball. We use this toshow 

(Theorem 2.3) that any free boundary solution has area at least 

 . We understandthat thisinequality is equivalent to the sharp 

isoperimetric inequality for free boundary surfaces. Wedefine 

the boundary conformal volume to be the Li-Yau conformal 

volume of the boundarysubmanifold. 

  

We then proceed to define a relative conformal 

volume for manifolds  whichacceptproper conformal 

immersions into the unit ball. We take the maximum volume 

of the conformal images of a given immersion, and then 

minimize over conformal immersions. We show that the 

relative conformal volume gives a general upper bound on the 

first nonzero Steklov eigenvalue over all conformal metrics on 

. Specifically we show for any  the general upper bound on 

 in terms of the relative 

conformal volume. For  this reduces to the bound 

. 

II. BOUNDARY CONFORMAL VOLUME 

     

Let  be a -dimensional compact 

Riemaniann manifold with boundary , and let  be 

the unit ball in . supposethat  admits a conformal map 

with . Let  be the group of 

conformal diffeomorphisms of . We define the boundary 

conformal volume to be the Li-Yau  conformal volume of 

the boundary submanifold . 

 

Definition 2.1. Given a map  that admits 

a conformal extension , define the boundary -

conformal volume of  by. 

 

 
 

The boundary -conformal volume of is then defined to be. 

 

 
 

where the infimum is over all  that admit 

conformal extensions .It can be shown that 

. The boundary 

conformal volume of  is defined to be. 

 

 
 

Note that:For any -dimensional manifold  with boundary, 

the boundary -conformalvolume of  is bounded below by 

the volume of the -dimensional sphere: 
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The proof is as in [4]; given a point on , let 

 be the one parameter subgroup of the group of 

conformal diffeomorphisms of the sphere generated by the 

gradient of the linear functions of  in the direction . For 

all  fixes the points and , 

and  for all If 

is a map whose differential  has rank  

at , then. 

 

 
 

for some  (here the integer  is the 

multiplicity of the immersed submanifold  atthe point ). 

 

For  and for a minimal surface  that is a 

solution to the free boundary problem inthe unit ball in 

, the boundary -conformal volume of  is the length of 

the boundaryof ; that is, its boundary length is maximal in its 

conformal orbit. 

 

Theorem 2.2. Let  a minimal surface in , with nonempty 

boundary , and meeting  orthogonally along 

, given by the isometric immersion . Then. 

 
 

The length of the boundary of . 

 

Proof.  The trace-free second fundamental form 

 is conformally invariant for 

surfaces. Using the Gauss equation we have 

. Therefore, given any 

, 

 

 
 

Where  denotes the induced area element on 

, and  and  denote the Gauss and mean curvatures of 

 in . Since  is minimal, , and so we have. 

 
 

By the Gauss-Bonnet Theorem, 

 

 
 

 
 

and using this in (1), since , we obtain 

 

 

 
 

If  is the oriented unit tangent vector of and  is 

the inward unit conormal vectoralong , then. 

 

 
 

where in the third to last equality we have used the 

fact that  since  meets orthogonally along 

Since  is conformal,  also meets  orthogonally 

along ,and so we also have that . Using this in 

(2) we obtain. 

 

 
 

This shows that 

 

 
 

as claimed. 

 

The proof of Theorem2.2meanthat any minimal 

surface that is a solution to the free boundary problem in the 

unit ball in  has area greater than or equal to that of a flat 

equatorial disk solution. 
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Theorem 2.3 Let  be a minimal surface in , with 

(nonempty) boundary , and meeting  

orthogonally along . Then. 

 

 
 

Proof.Given , as in the proof Theorem 2.2, we have. 

 

 
 

Since  is minimal, the coordinate functions are 

harmonic , and . Therefore,  

 

 
 

Using this in (3) gives. 

 

 
 

If , then as in Remark 5.2. of  [1], 

 

 
 

For some , and so, we have the desired conclusion. 

 

 
 

Corollary  2.4. The sharp isoperimetric inequality holds for 

free boundary minimal surfacesin the ball: 

 

 
 

Proof.  For free boundary minimal surfaces in the ball we 

have , as shown inthe proof of 

Theorem2.3. It follows that the inequality  is 

equivalent to the sharp isoperimetric inequality . 

 

Corollary 2.5. Show that  

 

   (i)  

    (ii)  

 

Proof .(i) Theorem 2.2  and Theorem 2.3   shows that  

 

 
 

             (ii) Since      then  

 

 
 

Definition 2.6. Let  be a -dimensional compact 

Riemannian manifold with boundary that admits a conformal 

map with . Define the relative -

conformal volume of  by. 

 

 
 

The relative -conformal volume of  is then defined to be 

 

 
 

Where the infimum is over all non-degenerate conformal maps  

 

with . 

 

Lemma 2.7. If , then . 

 

Proof.  To see this, suppose  is 

conformal, with . Let 

 and suppose that  is a conformal 

transformation of . Then  lies in the spherical cap 

 in  whose boundary lies in . Let 

 be an orthogonal transformation that rotates this 

spherical cap so that its boundary lies in an -plane parallel to 

the -plane containing the boundary of the original equatorial 

. Let  be the conformal projection of onto 

, and let . Clearly  is volume 

increasing, and so.  
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But  is the image of  under some conformal 

transformation of , therefore. 

 

 
 

Where  denotes the group of conformal transformations of 

, and denotes the group of conformal transformations of 

. 

 

The relative conformal volume of  is defined to be. 

 

 
 

Note that : For any -dimensional manifold  with boundary, 

the relative -conformal volume of  is bounded below by the 

volume of the -dimensional ball: 

 

 
 

To see this, suppose  is a conformal map with 

, whose differential has rank  at . 

The conformal diffeomorphisms of the sphere (see 

Remark5.2 of [1]), extend to conformal diffeomorphismsof 

, and, 

 

 
 

For some , the multiplicity of  at . 

 

III. FIRST EIGENVALUE 

 

Now we prove estimates for the first eigenvalue of 

the Dirichlet-to-Neumann map which are analogs of the 

estimates of [4] and [3] for the first Neumann eigenvalue of 

the Laplacian, we also give Relationship between it and 

conformal volume (see [2]).   

 

Corollary 3.1We  Show that  

. 

 

Proof.  For  suppose    is 

conformal, with . Let 

 and suppose that  is a conformal 

transformation of . Then  lies in the 

spherical cap in . whose boundary lies in 

. Let  be an orthogonal transformation 

that rotates this spherical cap so that its boundary lies in an -

plane parallel to the -plane containing the boundary of the 

original equatorial . Let  be the conformal projection of 

onto , and let 

. Clearly  is volume 

increasing, and so.  

 

 
 

But  is the image of  under some conformal 

transformation of , Hence. 

 

 
 

Where  is the group of conformal transformations of , 

and denotes the group of conformal transformations of 

. 

 

The relative conformal volume of  is defined to be. 

 

 
 

Lemma 3.2.  Let  be a compact Riemanian manifold, 

and let  be an immersion of into . There 

exists  such that  satisfies. 

 

 
 

For . 

Proof . See [5], [3] 
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Theorem 3.3.  Let  be a compact -dimensional 

Riemannian manifold with nonempty boundary. Let  

be the first non-zero eigenvalue of the Dirichlet-to-Neumann 

map on . Then. 

 

 
 

For all  for which  is defined (i.e. such 

that there exists a conformal mapping with 

). Equality implies that there exists a 

conformal harmonic map  which (after rescaling 

the metric ) is an isometry on , with  and 

such that  meets  orthogonally along . For 

 this map is an isometric minimal immersion of  to its 

image. Moreover, the immersion is given by a subspace of the 

first eigenspace. 

 

The following is an immediate consequence of the theorem. 

 

Corollary 3.4. Let  be a compact surface with nonempty 

boundary and metric . Let  be the first non-zero 

eigenvalue of the Dirichlet-to-Neumann map on . Then 

 
 

for all  for which  is defined. Equality 

implies that there exists a conformal minimal immersion 

 by first eigenfunctions which (after rescaling the 

metric) is anisometry on , with  and such 

that  meets  orthogonally along . 

 

Proof. Let be a conformal map with 

. By Lemma3.2  we can assume that 

 satisfies 

 

 
 

for . Let  be a harmonic extension of . 

Then, 

 

 

By Holder’s inequality, and since  is conformal 

 

 
 

On the other hand, since ,  

 

 
 

Then by (4) we have. 

 

 
 

Since  we get. 

 
        Now assume that we have equality, 

. Choose a 

sequence of conformal maps with 

, such that. 

 

 
 

and by composing with a conformal transformation of the ball 

we may assume 

 

 
 

for all . By changing the order of coordinates, we may 

assume that 

 

 
 

We have 
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Letting  and using 

 we get  

 

 
 

Therefore, for any fixed  us a bounded 

sequence in , and since the inclusion 

 is compact, by passing to a 

subsequence we can assume that  converges weakly in 

, strongly in , and point wise a.e., to 

map . Clearly  a.e. on 

 a.e. on , and  for 

. Since for all . 

 

 
 

And  

 

 
 

We have  

 

 
 

On the other hand,  weakly in , and so  

 

 
 

There fore, we must have equality in (6), and so 

 

 

which means converges to strongly in . 

Moreover, 

 

 
 

and it follows that  are first eigenfunctions. In 

particular, is harmonic for . Also, since is 

conformal and converges strongly in to , the map 

 

 

 
 

defines a conformal map. Therefore, is 

conformal and harmonic, with . Since 

and 

 

 
 

on  since are eigenfunctions, it follows that  meets 

orthogonally along . 

 

By scaling the metric we can assume that . 

Then by (7), on  we have 

 

, 

and hence is an isometry on  . Finally, for  we 

have from (5) 

 

 
 

By lower semicontinuity of the norm under weak convergence 

this implies 
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Now the Holder inequality implies the opposite 

inequality and thus we have equality in the Holder inequality, 

which implies  is constant on , and this constant must 

be by the boundary normalization. Since is conformal this 

implies that is an isometry as claimed. 
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