Solutions Of Homogenous Nonlinear Elliptic Equations Using Derivatives

Yousri.S.M.Yasin¹, Habeeb I.A.Ibrahim²

^{1, 2} Dept of Mathematics

¹Faculty of Education University of Zalingei –Sudan ²College of Science & Arts in Elmiznab – Qassim University – Saudi Arabia.

Abstract-Let u^m be a domain of \mathbb{R}^n , the Hessian of (u^m) is $D^2 u^m$ and the uniformly elliptic F^m , we prove that, there exists a viscosity solution of a fully homogenous nonlinear elliptic equation by using second derivative.

Keywords- Fully nonlinear elliptic equations; Viscosity solutions; Dirichlet problem, Hessian matrices

I. INTRODUCTION

In this paper we study the regularity of solutions of fully nonlinear elliptic equations of the form

$$F^m(D^2 u^m) = 0, (1.1)$$

where function u^m defined in a domain of \mathbb{R}^n and $D^2 u^m$ denotes the Hessian of the function u^m . We assume that F^m is uniformly elliptic, i.e. there exists a constant $\epsilon \geq 0$ such that:

$$(1+\epsilon)^{-1}|\xi|^2 \le F_{u_{ij}^m}^m \xi_i \xi_j \le (1+\epsilon)|\xi|^2, \quad \forall \xi \in \mathbb{R}^n.$$

$$(1.2)$$

Here, u_{ij}^m denotes the partial derivative $\partial^2 u^m / \partial x_i \partial x_j$.

A function u^m is called a classical solution of (1.1) if $u^m \in C^2(\Omega_m)$ and u^m satisfies (1.1). Actually, any classical solution of (1.1) is a smooth $(C^{\alpha+3})$ solution, provided that F^m is a smooth C^α function of its arguments $\alpha > 1$ [3,4]. The class of classical solutions of (1.1) is not sufficiently large to provide solutions to the Dirichlet problem, see ([5],[8]):

$$\begin{cases} F^m(D^2u^m) = 0 & in \,\Omega_m, \\ u^m = \varphi^m & on \,\partial\Omega_m, \end{cases}$$
(1.3)

where $\Omega_m \in \mathbb{R}^n$ is a bounded domain with smooth boundary $\partial \Omega_m$ and φ^m is a continuous function on $\partial \Omega_m$. Even if we assume that Ω_m is a ball in \mathbb{R}^{12} one can find a smooth uniformly elliptic F^m and a smooth φ^m such that the Dirichlet problem (1.2) has no classical solution, ([5], [7]).

Fortunately a concept of weak of viscosity solutions for the fully nonlinear elliptic equations was developed, so that the Dirichlet problem (1.2) has a unique viscosity solution, see [1,2]. Viscosity solutions of (1.1) are defined as continuous functions verifying a maximum principle. Their best known regularity in the interior of domain is $C^{1+\epsilon}$, for some $\epsilon > 0$, see [1].

In [5] we gave an example in \mathbb{R}^{12} of a viscosity solution of (1.1) which has bounded but discontinuous second derivatives. In this paper we show that actually the second derivative can blow up. For a sufficiently large dimension n we prove that the best possible regularity which one can expect a priori for viscosity solutions at inner points of a domain does not exceed $C^{2-\epsilon}$ for some $\epsilon > 0$.

II. BASIC PREPOSITIONS AND THE MAIN LEMMA

We begin with two principal properties of the function W^m , see [5]. Let $X = (r, s, t) \in \mathbb{R}^{12}$ be a variable vector with r, s and $t \in \mathbb{R}^{24}$. For any $t = (t_0, t_1, t_2, t_3) \in \mathbb{R}^4$ we denote by $qt = t_0 + t_1 \cdot i + t_2 \cdot j + t_3 \cdot k \in \mathbb{H}$ (Hamilton quaternions).

Define the cubic form P = P(X) = P(r, s, t) as follows:

$$P(r,s,t) = Re(qr \cdot qs \cdot qt) = r_0 s_0 t_0 - r_0 s_1 t_1 - r_0 s_2 t_2 - r_0 s_3 t_3 - r_1 s_0 t_1 - r_1 s_1 t_0$$

$$r_1 s_2 t_3 + r_1 s_3 t_2 - r_2 s_0 t_2 + r_2 s_1 t_3 - r_2 s_2 t_0 - r_2 s_3 t_1 - r_3 s_0 t_3 - r_3 s_1 t_2 + r_3 s_2 t_1 - r_3 s_3 t_0,$$

and denote

$$w^m(X) = P(X)/|X|$$

We have the following properties of the function W^m :

Proposition (2.1):

Let $a \neq a + \epsilon \in S_1^{11}$. Then there exist two vectors $e, f \in S_1^{11}, e, f \perp a, a + \epsilon_{\text{such that}}$ $w^m(a) = w^m(a + \epsilon) \ge |a| - (a + \epsilon)|/4\sqrt{2}$

$$W_{ee}^{m}(a) - W_{ee}^{m}(a+\epsilon) \ge |a - (a+\epsilon)|/4\sqrt{3}$$
$$W_{ff}^{m}(a) - W_{ff}^{m}(a+\epsilon) \le -|a - (a+\epsilon)|/4\sqrt{3}$$

and thus

$$\|Hess(w^{m}(a)) - Hess(w^{m}(a + \epsilon))\| \ge |a - (a + \epsilon)|/24\sqrt{3};$$

in what follows we use the norm on matrices $A \in Mat(n \times n \mathbb{R})$

 $A \in Mat(n \times n, \mathbb{R})$ defined as $||A|| \coloneqq Tr(A^t \cdot A)/n$

Proposition (2.2):

Let $a \neq a + \epsilon \in S_1^{11}$. Then there exist two vectors $e, f \in S_1^{11}, e, f \perp a, a + \epsilon$ such that

$$\begin{split} & w_{ee}^{m}(a) - w_{ee}^{m}(a+\epsilon) \geq \left\| \operatorname{Hess}(w^{m}(a)) - \operatorname{Hess}(w^{m}(a+\epsilon)) \right\| / M \\ & w_{ff}^{m}(a) - w_{ff}^{m}(a+\epsilon) \leq \\ & - \left\| \operatorname{Hess}(w^{m}(a)) - \operatorname{Hess}(w^{m}(a+\epsilon)) \right\| / \\ & M \end{split}$$

where $M \coloneqq 48\sqrt{3} \cdot 32 = 1536\sqrt{3}$ Let now $V = (X, X + \epsilon) \in \mathbb{R}^{24}$ be variable and A = (a, a'), $A + \epsilon = (a + \epsilon, a' + \epsilon') \in \mathbb{R}^{24}$ be fixed with $X, a, a' \in \mathbb{R}^{12}$. Define for a (small) positive δ , $W_m(V) := w^m(X) + w^m(X + \epsilon), \quad W_m^{\delta}(V) := W_m(V)|V|^{-\delta}$ and for a (large) positive K, $u^m(V) := W_m^{\delta}(V) := (W_m(V) + K \cdot r_m^{\delta}(V))|V|^{-\delta} = W_m^{\delta}(V) + K \cdot r_m^{\delta}(V)$

with

$$r_m(V) = r_m(X, X + \epsilon) \coloneqq |X|^2 + |X + \epsilon|^2,$$

$$r_m^{\delta}(V) \coloneqq r_m(V)|V|^{-\delta}$$

We denote $H_m(V) \coloneqq Hess(u^m(V))$
In what follows we fix $\delta = 10^{-6}, K = 60$

Lemma (2.3):

For any pair $A = (a, a'), A + \epsilon = (a + \epsilon, a' + \epsilon') \in S_1^{23}$ one has: (i) $\|W_m(A) - W_m(A + \epsilon)\| \le 8 \|Hess(W_m(A)) - Hess(W_m(A + \epsilon))\|/5;$ (ii) $\|H_m(A) - H_m(A + \epsilon)\| \ge \|Hess(W_m(A)) - Hess(W_m(A + \epsilon))\|/2;$ (iii) $\|H_m(A)\| \le 2K.$

Proof.⁽ⁱ⁾ Indeed since P is harmonic one easily calculates that

$$Tr(Hess(w^{m}(a)) - Hess(w^{m}(a + \epsilon))) = -15(w^{m}(a) - w^{m}(a + \epsilon))$$

(ii) Direct calculations show that

$$Hess\left(W_{m}^{\delta}(A)\right) = Hess(W_{m}(A)) - \delta(\nabla W_{m}(A) \cdot A^{t} + A \cdot \nabla^{t} W_{m}(A)) - \delta W_{m}(A) I_{24} + \delta(\delta + 2) W_{m}(A) (A \cdot A^{t}),$$

$$Hess\left(r_{m}^{\delta}(A)\right) = 2J - \delta r_{m}(A) I_{24} + N(A),$$
where I_{n} is the identity matrix of size n , and $J, N(A) \in Mat(24 \times 24, \mathbb{R})$ are defined by:

$$J = \begin{pmatrix} I_{12} & 0 \\ 0 & -I_{12} \end{pmatrix}, N(A) = \begin{pmatrix} P(A) & Q(A) \\ R(A) & S(A) \end{pmatrix},$$

(iii)

. We have

$$\begin{split} \|H_m(A)\| &\leq \left\| Hess\left(W_m^{\delta}(A)\right) \right\| + K + \delta(7+\delta) \\ &\leq \left\| Hess\left(W_m(A)\right) \right\| + \delta(2|\nabla W_m(A)| + 12 + 2\delta) + K + \delta(7+\delta) \\ &\leq 2/\sqrt{3} + 200\delta + K < 2K \end{split}$$

Lemma (2.4):

For any pair $A = (a, a'), A + \epsilon = (a + \epsilon, a' + \epsilon') \in S_1^{23}$ there exists $E = (e, e') \in S_1^{23}$ with $E \perp A, E \perp (A + \epsilon)_{\text{satisfying:}}$ $W_{K,E,E}^{\delta}(A + \epsilon) = 0,$ $W_{K,E,E}^{\delta}(A) \ge 2 \cdot 10^{-4} ||H_m(A) - H_m(A + \epsilon)||$

Proof. Define: $Q_{A,A+\epsilon}^{\delta}(E) \coloneqq W_{K,E,E}^{\delta}(A) - W_{K,E,E}^{\delta}(A+\epsilon) = u_{E,E}^{m}(A) - u_{E,E}^{m}(A+\epsilon)$

Note for
$$E \perp V$$
 we have:
 $W_{K,E,E}^{\delta}(V) = \left(W_{E,E}(V) + K(|e|^2 - |e'|^2)\right)|V|^{-\delta} - \delta(|X|^2 - |X + \epsilon|^2 + W_m(V))|V|^{-2-\delta}$

In particular this remark applies to $A_{and} A + \epsilon_{.}$ By Property (*ii*) we can find: $e_0, e'_0 \in S_1^{11}, e \perp a, e'_0 \perp a', e_0 \perp (a + \epsilon), e'_0 \perp (a + \epsilon)'_{s.t.}$ $\left(w^m_{e_0,e_0}(a) - w^m_{e_0,e_0}(a + \epsilon)\right) \geq ||Hess(w^m(a)) - Hess(w^m(a + \epsilon))||/M$

$$\left\| Hess(w^m(a')) - Hess(w^m(a+\epsilon)') \right\| / M$$

Let $\theta \in [0,\pi]$ and let $E(\theta) \coloneqq ((\sin \theta)_{e_0}, (\cos \theta)_{e'_0}) \in S_1^{23}$; we see that $E(\theta) \perp A$, $E(\theta) \perp A + \epsilon$. One easily verifies that

$$\begin{split} &Q_{A,A+\epsilon}^{\delta}\Big(E(\theta)\Big) = u_{E(\theta),E(\theta)}^{m}(A) - u_{E(\theta),E(\theta)}^{m}(A + \epsilon) \\ &= W_{E(\theta),E(\theta)}(A) - W_{E(\theta),E(\theta)}(A + \epsilon) - \delta\big(W_{m}(A) - W_{m}(A + \epsilon)\big) \\ &-\delta(\sin^{2}\theta |a|^{2} - \cos^{2}\theta |a'|^{2} - \sin^{2}\theta |a + \epsilon|^{2} + \cos^{2}\theta |a' + \epsilon'|^{2}) \\ &= \sin^{2}\theta\Big(w_{e_{0},e_{0}}^{m}(a) - w_{e_{0},e_{0}}^{m}(a + \epsilon)\Big) + \cos^{2}\theta\Big(w_{e_{0},e_{0}}^{m}(a') - w_{e_{0},e_{0}}^{m}(a + \epsilon)'\Big) \\ &-\delta\big(W_{m}(A) - W_{m}(A + \epsilon)\big) \\ &-\delta\big(\sin^{2}\theta (|a|^{2} - |a + \epsilon|^{2}) + \cos^{2}\theta (|a'|^{2} - |a' + \epsilon'|^{2})\big). \\ &\qquad \theta \in \Big[\arcsin\frac{7}{10} = \theta_{0}, \arccos\frac{7}{10} = \theta_{1}\Big]. \\ \text{Let now} \\ &\qquad \theta \in \Big[\arcsin\frac{7}{10} = \theta_{0}, \arccos\frac{7}{10} = \theta_{1}\Big]. \\ \text{Let now} \\ &\qquad \theta \in \Big[\arcsin\frac{7}{10} = \theta_{0}, \arccos\frac{7}{10} = \theta_{1}\Big]. \\ \text{Let now} \\ &\qquad \theta \in \Big[\arcsin\frac{7}{10} = \theta_{0}, \arccos\frac{7}{10} = \theta_{1}\Big]. \\ &\qquad (2M^{-1}\sin^{2}\theta_{0} - 8\delta/15)(\big\|Hess(W_{m}(A)) - Hess(W_{m}(A + \epsilon))\big\|\big) \\ &- 2\delta\cos^{2}\theta_{0}(|a - (a + \epsilon)| + |a' - (a + \epsilon)'|) \\ &\geq (2M^{-1}649 - 8\delta/15)(\big\|Hess(W_{m}(A)) - Hess(W_{m}(A + \epsilon))\big\|\big) \\ &- 102\delta(|a - (a + \epsilon)| + |a' - (a + \epsilon)'|) \\ &\geq (0.98M^{-1} - 50\delta)(\big\|Hess(W_{m}(A)) - Hess(W_{m}(A + \epsilon))\big\|. \\ \text{Besides,} \\ &\qquad W_{K,E(\theta),E(\theta)}^{\delta}(A + \epsilon) = W_{E(\theta),E(\theta)}(A + \epsilon) - \delta W_{m}(A + \epsilon) + K\cos 2\theta \\ &- \delta(|a + \epsilon|^{2} - |a' + \epsilon'|^{2}). \\ \text{This} gives for \\ &\qquad \theta = \theta_{0}, \\ &\qquad W_{K,E(\theta_{0}),E(\theta_{0})}^{\delta}(A + \epsilon) = W_{E(\theta_{0}),E(\theta_{0})}(A + \epsilon) - \delta W_{m}(A + \epsilon) + 0.02K \\ -\delta(|a + \epsilon|^{2} - |a' + \epsilon'|^{2}) > - 2/\sqrt{3} - 2\delta + 12 > 0 \\ ; \end{aligned}$$

and for $\theta = \theta_1$ $W_{K,E(\theta_1),E(\theta_1)}^{\delta}(A+\epsilon) = W_{E(\theta_1),E(\theta_1)}(A+\epsilon) - \delta W_m(A+\epsilon) + 0.02K$ $-\delta(|a+\epsilon|^2 - |a'+\epsilon'|^2) < 2/\sqrt{3} + 2\delta - 1.2 < 0$ The lemma follows for $E = E(\theta)$ with $\theta \in]\theta_0, \theta_1[$.

Proposition (2.5) (Main Lemma):

For any pair $A = (a, a'), A + \epsilon = (a + \epsilon, a' + \epsilon') \in$ B_1^{23} there exist two vectors $E = (e, e'), \overline{E} = (\overline{e}, \overline{e'}) \in S_1^{23}$ with $E \perp A, E \perp (A + \epsilon), \overline{E} \perp A, \overline{E} \perp (A + \epsilon)$ satisfying:

$$\begin{split} & W_{K,E,E}^{\delta}(A) - W_{K,E,E}^{\delta}(A + \epsilon) \geq \epsilon \|H_m(A) - H_m(A + \epsilon)\| \\ & W_{K,\bar{E},\bar{E}}^{\delta}(A) - W_{K,\bar{E},\bar{E}}^{\delta}(A + \epsilon) \leq \\ & -\epsilon \|H_m(A) - H_m(A + \epsilon)\| \\ & \\ & \text{where } \epsilon \coloneqq 10^{-4} \end{split}$$

Proof. We can suppose w.r.g. that $|A| \leq |A + \epsilon|$. Since $W_{K,E,E}^{\delta}(A) - W_{K,E,E}^{\delta}(A + \epsilon)$ and $||H_m(A) - H_m(A + \epsilon)||$ are both $(-\delta)$. homogeneous one can as well suppose that $|A + \epsilon| = 1$, $1 \geq |A|$. Define $A' \coloneqq A/|A| \in S_1^{23}$, $k \coloneqq |A|$. We consider two cases: $(i)||H_m(A) - H_m(A + \epsilon)|| \leq 2||H_m(A') - H_m(A + \epsilon)||$; (ii) $||H_m(A) - H_m(A + \epsilon)|| \geq 2||H_m(A') - H_m(A + \epsilon)||$

$$\begin{aligned} \|H_m(A) - H_m(A + \epsilon)\| &\geq 2\|H_m(A') - H_m(A + \epsilon)\| \end{aligned}$$

In the case (i) we apply Lemma 2 and find a vector $E \in S_1^{23}$ such that $W_{K,E,E}^{\delta}(A') - W_{K,E,E}^{\delta}(A+\epsilon) = W_{K,E,E}^{\delta}(A) \ge 2\epsilon ||H_m(A') - H_m(A+\epsilon)||$ $\ge \epsilon ||H_m(A) - H_m(A+\epsilon)||$

The second inequality is obtained analogously.

$$\|H_m(A) - H_m(A + \epsilon)\| \ge 2\|H_m(A') - H_m(A + \epsilon)\|$$

Since

Let now

$$\begin{aligned} \|H_{m}(A) - H_{m}(A + \epsilon)\| &= \|k^{-\delta}H_{m}(A') - H_{m}(A + \epsilon)\| \\ &\ge 2\|H_{m}(A') - H_{m}(A + \epsilon)\| \\ \text{we get:} \\ (k^{-\delta} - 1)\|H_{m}(A')\| &\ge \|H_{m}(A') - H_{m}(A + \epsilon)\| \end{aligned}$$

Thus,

$$\|H_m(A) - H_m(A + \epsilon)\| = \|k^{-\delta} H_m(A') - H_m(A + \epsilon)\|$$

= $\|(k^{-\delta} - 1)H_m(A') + H_m(A') - H_m(A + \epsilon)\|$

www.ijsart.com

Page | 31

 $\leq (k^{-\delta} - 1) ||H_m(A')|| + ||H_m(A') - H_m(A + \epsilon)||$ $\leq 2(k^{-\delta} - 1) ||H_m(A')||$ Take now a vector E' = (e', 0) such that $W_{K,E',E'}^{\delta}(A') - W_{K,E',E'}^{\delta}(A + \epsilon)$ $= W_{E',E'}^{\delta}(A') - W_{E',E'}^{\delta}(A + \epsilon) + K \cdot r_{E',E'}^{\delta}(A') - K \cdot r_{E',E'}^{\delta}(A + \epsilon) \geq 0$ We then get, $W_{K,E',E'}^{\delta}(A') - W_{K,E',E'}^{\delta}(A') + W_{K,E',E'}^{\delta}(A') - W_{K,E',E'}^{\delta}(A + \epsilon)$ $= (k^{-\delta} - 1) W_{K,E',E'}^{\delta}(A') + W_{K,E',E'}^{\delta}(A') - W_{K,E',E'}^{\delta}(A + \epsilon)$ $\geq (k^{-\delta} - 1) (K - 8 - 3\delta) \geq (k^{-\delta} - 1) K/2$ $\geq (k^{-\delta} - 1) ||H_m(A')||/4 \geq ||H_m(A) - H_m(A + \epsilon)||/8$ which finishes the proof of the first inequality; the proof of the second one is completely parallel.

III. VISCOSITY SOLUTIONS OF UNIFORMLY ELLIPTIC EQUATIONS ON \mathbb{R}^{24}

Theorem (3.1):

We prove hat, for $\delta = 10^{-6}$ there exists a continuous homogeneous order $2 - \delta$ function u^m in the unit ball $B \subset \mathbb{R}^{24}$ which is a viscosity solution to a uniformly elliptic equation (1.1).

Notice, that there are no defined in the whole space \mathbb{R}^{n} homogeneous order α solutions to fully nonlinear elliptic equation (1.1) for $0 < \alpha < 2$, [6]. The proof of

Theorem is strongly based on results and methods of [5].

Proof:

Let
$$Q$$
 be the space of the quadratic forms on \mathbb{R}^n equipped
by its natural inner product
 $a \cdot (a + \epsilon) = trace(a(a + \epsilon))$ for
 $a, a + \epsilon \in Q$

Let us choose in the space Q an orthogonal coordinate system $Z_1, Z_2, \ldots, Z_k, S, k = \frac{n(n+1)}{2} - 1$ such that S is the

trace. Let
$$\pi: Q \to Z$$
 be the orthogonal projection of Q onto
the Z -space. For $\epsilon > 0$, we denote by $K_{1+\epsilon}$ the cone:
 $K_{1+\epsilon} = \{a \in Q: \exists C > 0 \text{ s.t. the eigenvalues of } a \in [C/(1+\epsilon), C(1+\epsilon)]\}$

Since on Q the maximal eigenvalue of a quadratic form is a convex function and the minimal eigenvalue is a concave function it follows that $K_{1+\epsilon}$ is a convex cone. Let $K_{1+\epsilon}^*$ denote the adjoint cone of $K_{1+\epsilon}$, that is, $K_{1+\epsilon}^* = \{a + \epsilon \in Q: (a + \epsilon) \cdot c = 0 \text{ for all } c \in K_{1+\epsilon}\}$

As an adjoint to a convex cone the cone $K_{1+\epsilon}^*$ is a convex itself [8].

The Set $L_{1+\epsilon} = Q \setminus (K_{1+\epsilon}^* \cup -K_{1+\epsilon}^*)_{\text{Notice that}}$ $a \in L_{1+\epsilon}$ is equivalent to $a \cdot (a + \epsilon) = 0$ for some $a + \epsilon \in K_{1+\epsilon}$, i.e., $L_{1+\epsilon}$ is a union of all hyper-planes in Q with normals in $K_{1+\epsilon}$.

Let $G \subset Q$ be a set. We say that $G_{\text{satisfies the }}(a + \epsilon)$ cone condition if for any two points $a, a + \epsilon \in G$, the matrix $a - (a + \epsilon) \in L_{1+\epsilon}$.

Lemma (3.2):

Let $\Sigma^m \subseteq Q$ be a smooth k-dimensional manifold. Assume that Σ satisfies the $(1 + \epsilon)$ -cone condition. Then there exists a smooth function F^m on Q such that $F^m(\Sigma^m) = 0$, and which satisfies the inequality (2) with the ellipticity constant $1 + \epsilon < 4(1 + \epsilon)^2 \sqrt{n}$. Denote $D = S^{11} \times (0, 1/\sqrt{2}), G = D^2$. Define a map $f_m: D \to B^{12}$ and $g_m: G \to B^{24}$ such that if $a \in S^{11}, \theta \in (0, 1)$, $x \in (a, \theta)_{\text{then}}$ $f_m(x) = \theta a$, and if $z_1, z_2 \in D$, $z = (z_1, z_2) \in G$ then $g_m(z) = (f_m(z_1), f_m(z_2))$. The Hessian map H_m

ISSN [ONLINE]: 2395-1052

for the function u^m is defined on the set $B^{24} \setminus (\{X = 0\} \cup \{X + \epsilon = 0\}).$ $H_m: B \to Q, \quad H_m(A) := Hess(u^m(A))$ for $A \in B^{24} \setminus (\{X = 0\} \cup \{X + \epsilon = 0\}), Q_{\text{begin}}$ the space of the quadratic forms on \mathbb{R}^{24} . Since $g_m(G) \subset B^{24} \setminus (\{X = 0\} \cup \{X + \epsilon = 0\}) \quad \text{we}$ $\operatorname{can lift} H_m \operatorname{on} G_{\cdot \operatorname{for}} z \in G_{\operatorname{define}}$ $h_m(z) = H_m(g_m(z))$ Since W^m is a homogeneous order 2 function on \mathbb{R}^{12} we conclude that the map $h_m: G \to Q$ has a smooth extension to $h_m: \overline{G} \to Q$ where $E := (\{0\} \times S_1^{11}) \cup (S_1^{11} \times \{0\})$ Denote: $\Sigma^m = h_m(\bar{G} - E)$ Then Σ^m is a closed manifold with boundary in Q. By Main Lemma Σ^m satisfies the $(1 + \epsilon)$ -cone condition with $1 + \epsilon = 23 \cdot 10^4$. Hence by Lemma 3 there exists a smooth function F^m on Q which satisfies the inequalities (*) with the ellipticity constant $1 + \epsilon < 4 \cdot \sqrt{24} \cdot 23^2 \cdot 10^8 < 1.1 \cdot 10^{12}$ and $F_{1\Sigma}^m = 0$ that Thus such for $z \in B^{24} \cap (\{X = 0\} \cup \{X + \epsilon = 0\})_{\text{we have:}}$ $F^m(D^2u^m(z)) = 0.$

To complete the proof that u^m is a viscosity solution of (1.1) it is sufficient to show that for any point $z_0 \in B^{24} \cap (\{X = 0\} \cup \{X + \epsilon = 0\})$ and for second order polynomials $p_1(p_2)$ on \mathbb{R}^{24} such that $p_1(z_0) = p_2(z_0) = u^m(z_0)$ and such that $p_1 \leq u^m(p_2 \geq u^m)$ in a neighborhood of Z_0 it will follow that $F^m(D^2p_1) \leq 0(F^m(D^2p_2) \geq 0)$. Let $z_0 = (0, x + \epsilon) \in \mathbb{R}^{24}$, $e \in S^{23}$. Since w^m is a homogeneous order 2 function in $\mathbb{R}^{12} \setminus \{0\}$ it follows that $u^m(z_0 + \epsilon e)$ is a smooth function for $\epsilon \geq 0$. We define a homogeneous order 2 function ψ^m on \mathbb{R}^{24} such that for any $e \in S^{23}$ the quadratic part of $u^m(z_0 + \epsilon c)$ as a function of ϵ coincide with $\psi^m(\epsilon e)$. Since the range of $Hess(\psi^m)$ coincide with the limit set of $Hess(u^m(z))_{as} z \to z_0, z \in B_{it}$ follows that ψ^m is a solution of the equation $F^m(D^2\psi^m)=0.$ Let $p_m(x)$, $x \in \mathbb{R}^{24}$ be a quadratic form such that $p_m \leq w^m$ on \mathbb{R}^{24} . We choose any quadratic form $p'_m(x)_{\text{such that}} p_m \le p'_m \le \psi^m_{\text{and there is a point}}$ $x' \neq 0$ at which $p'_m(x') = \psi^m(x')$. Then it follows that $F^m(p_m) \leq F^m(p'_m) \leq 0$. Consequently for any quadratic form $p_m(x)$ from the inequality $p_m \le \psi^m (p_m \ge \psi^m)$ it follows that $F^m(p_m) \le 0(F^m(p_m) \ge 0)$. This implies that ψ^m is a viscosity solution of (1.1) in \mathbb{R}^{24} (see [1]). Corollary (3.3): anv pair $A = (a, a'), A + \varepsilon = (a + \varepsilon, a' + \varepsilon') \in S_1^{23}$ there exists $E = (e, e') \in S_1^{23}$ with $E \perp A, E \perp A + \varepsilon_{\text{satisfying:}}$ $W_{\kappa,\varepsilon,\varepsilon}^{\delta}(A+\varepsilon) = 0$ $W_{\nu_{FF}}^{\delta}(A) \ge 2 \cdot 10^{-4} \|H(A) - H(A + \varepsilon)\|$ **Proof:** Define: $Q_{AB}^{\delta}(E) := W_{KEE}^{\delta}(A) - W_{KEE}^{\delta}(A + \varepsilon) =$ $u_{EE}(A) - u_{EE}(A + \varepsilon)$ $F \perp V$

Note for
$$L = V$$
 we have:
 $W_{K,E,E}^{\delta}(V) = (W_{E,E}(V) + K(|e|^2 - |e'|^2))|V|^{-\delta} - \delta(|X|^2 - |Y|^2 + W(V))|V|^{-2-\delta}$

In particular this remark applies to $A_{\text{and}} A + \varepsilon_{\text{By}}$ Property (ii) in Lemma (2.3) we can find: $e_0, e_0^{'} \in S_1^{11}, e \perp a, e_0^{'} \perp a^{'}, e_0 \perp a + \varepsilon, e_0^{'} \perp a^{'} + \varepsilon^{'}$ s.t.

 $(W_{e_0,e_0}(a) - W_{e_0,e_0}(a+\varepsilon)) \ge$ $\|\text{Hess}(w(a)) - \text{Hess}(w(a + \varepsilon))\|/M$ $(w_{e_{a},e_{a}'}(a') - w_{e_{a},e_{a}'}(a' + \varepsilon')) \ge$ $\|\text{Hess}(w(a')) - \text{Hess}(w(a' + \varepsilon'))\|/M$ $_{\text{Let}} \theta \in [0,\pi]_{\text{and}}$ $_{\text{let}} E(\theta) := \left((\sin \theta) e_0, (\cos \theta) e_0' \right) \in S_1^{23} \text{ we}$ see that $E(\theta) \perp A, E(\theta) \perp A + \varepsilon$. One easily verifies that $Q_{A,B}^{\delta}(E(\theta)) = u_{E(\theta),E(\theta)}(A) - u_{E(\theta),E(\theta)}(A+\varepsilon)$ $= W_{E(\theta),E(\theta)}(A) - W_{E(\theta),E(\theta)}(A + \varepsilon) - \delta(W(A) - W(A + \varepsilon))$ $-\delta(\sin^2\theta |a|^2 - \cos^2\theta |a'|^2 - \sin^2\theta |a + \varepsilon|^2 + \cos^2\theta |a' + \varepsilon'|^2)$ $= \sin^{2}\theta \left(w_{e_{n},e_{n}}(a) - w_{e_{n},e_{n}}(a+\varepsilon) \right) + \cos^{2}\theta \left(w_{e_{n},e_{n}}'(a') - w_{e_{n}',e_{n}}'(a+\varepsilon) \right)$ $(a' + \varepsilon') - \delta(W(A) - W(A + \varepsilon))$ $-\delta(\sin^2\theta(|a|^2-|a+\varepsilon|^2)+$ $\cos^2\theta \left(\left| a' \right|^2 - \left| a' + \varepsilon' \right|^2 \right) \right)$ Let now $\theta \in [\arcsin \frac{7}{10} = \theta_0, \arccos \frac{7}{10} = \theta_1]$ Then $Q_{A_{\mathcal{B}}}^{\delta}(E(\theta)) \ge (2M^{-1}\sin^{2}\theta_{0} - 8\delta/15)(\|\operatorname{Hess}(W(A)) - \operatorname{Hess}(W(A + \varepsilon))\|)$ $-2\delta \cos^2 \theta_0 \left(\left| a - (a + \varepsilon) \right| + \left| a' - (a' + \varepsilon') \right| \right)$ $\geq (2M^{-1}0.49 - 8\delta/15)(||\text{Hess}(W(A)) - \text{Hess}(W(A + \varepsilon))||)$ $-1.02\delta(|a - (a + \varepsilon)| + |a' - (a' + \varepsilon')|)$ $\geq (0.98M^{-1} - 50\delta)(||\operatorname{Hess}(W(A)) - \operatorname{Hess}(W(A + \varepsilon))||)$ $\geq 2 \cdot 10^{-4} \|H(A) - H(A + \varepsilon)\|$ Besides. $W_{\mathcal{K}_{\mathcal{F}}(\theta),\mathcal{F}(\theta)}^{\delta}(A+\varepsilon) = W_{\mathcal{F}(\theta),\mathcal{F}(\theta)}(A+\varepsilon) - \delta W(A+\varepsilon)$ $+K\cos 2\theta - \delta(|a+\varepsilon|^2 - |a'+\varepsilon'|^2)$

This gives for $\theta = \theta_0$, $W_{K,E(\theta_0),E(\theta_0)}^{\delta}(A+\varepsilon) = W_{E(\theta_0),E(\theta_0)}(A+\varepsilon) - \delta W(A+\varepsilon) + 0.02K$ $-\delta(|a+\varepsilon|^2 - |a'+\varepsilon'|^2) > -2/\sqrt{3} - 2\delta + 1.2 > 0$

 $\begin{array}{l} \text{and for } \boldsymbol{\theta} \ = \ \boldsymbol{\theta}_{1} \\ W_{K, E(\boldsymbol{\theta}_{1}), E(\boldsymbol{\theta}_{1})}^{\delta}(A + \varepsilon) = W_{E(\boldsymbol{\theta}_{1}), E(\boldsymbol{\theta}_{1})}(A + \varepsilon) - \delta W(A + \varepsilon) - 0.02K \end{array}$

$$-\delta(|a+\varepsilon|^2 - |a'+\varepsilon'|^2) < 2/\sqrt{3} + 2\delta - 1.2 < 0$$

The corollary follows for $E = E(\theta)_{\text{with}} \theta \in]\theta_0, \theta_1[$ Corollary (3.4): For anv pair $A = (a, a'), A + \varepsilon = (a + \varepsilon, a' + \varepsilon') \in B_1^{23}$ there exist vectors $E = (e, e'), \bar{E} = (\bar{e}, \bar{e}') \in S_1^{23}$ with $E \perp A, E \perp A + \varepsilon, \overline{E} \perp A, \overline{E} \perp A + \varepsilon_{\text{satisfying:}}$ $W_{K,E,E}^{\delta}(A) - W_{K,E,E}^{\delta}(A+\varepsilon) \ge \varepsilon ||H(A) H(A + \varepsilon)$ $W^{\delta}_{\kappa,\tilde{\kappa},\tilde{\kappa}}(A) - W^{\delta}_{\kappa,\tilde{\kappa},\tilde{\kappa}}(A+\varepsilon) \le -\varepsilon ||H(A) - \varepsilon||H(A)||H(A$ $H(A + \varepsilon)$ where

$$\epsilon := 10^{-4}$$

Proof: We can suppose w.r.t. that $|A| \leq |A + \varepsilon|$. Since $W_{K,E,E}^{\delta}(A) - W_{K,E,E}^{\delta}(A+\varepsilon)$ and $||H(A) - H(A + \varepsilon)||_{\text{are both }} (-\delta)_{\text{-homogeneous}}$ one can as well suppose that $|A + \varepsilon| = 1, 1 \ge |A|$ $A':=A/|A| \in S_1^{23}, k:=|A|$ Define We consider two cases: (i) $||H(A) - H(A + \varepsilon)|| \le 2||H(A') - H(A + \varepsilon)||$ ε)∥ (ii) : $||H(A) - H(A + \varepsilon)|| \ge 2||H(A') - H(A + \varepsilon)|| \le 2||H(A') - H(A + \varepsilon)||$ *ε*)∥

. In the case (i) we apply Lemma (5.1.4) and find a vector $E \in S_1^{23}$ such that $W_{K,E,E}^{\delta}(A') - W_{K,E,E}^{\delta}(A + \varepsilon) = W_{K,E,E}^{\delta}(A)$ $\geq 2\varepsilon \|H(A') - H(A + \varepsilon)\| \geq \varepsilon \|H(A) - H(A + \varepsilon)\|$ The second inequality is obtained analogously. Let now

$$\|H(A) - H(A + \varepsilon)\| \ge 2\|H(A) - H(A + \varepsilon)\|$$

Since

$$\begin{split} \|H(A) - H(B)\| &= \|k^{-\delta}H(A') - H(B)\| \ge \\ 2\|H(A') - H(B)\| \\ & \text{we get:} \\ (k^{-\delta} - 1)\|H(A')\| \ge \|H(A') - H(B)\| \\ \text{Thus,} \\ \|H(A) - H(A + \varepsilon)\| &= \|k^{-\delta}H(A') - H(A + \varepsilon)\| \\ &= \|(k^{-\delta} - 1)H(A') + H(A') - H(A + \varepsilon)\| \\ &\le (k^{-\delta} - 1)\|H(A')\| + \|H(A') - H(A + \varepsilon)\| \\ &\le (k^{-\delta} - 1)\|H(A')\| + \|H(A') - H(A + \varepsilon)\| \\ &\le 2(k^{-\delta} - 1)\|H(A')\| \end{aligned}$$

Take now a vector E' = (e', 0) such that $W_{K,E',E'}^{\delta}(A') - W_{K,E',E'}^{\delta}(A + \varepsilon) = W_{E',E'}^{\delta}(A') - W_{E',E'}^{\delta}(A + \varepsilon)$ $+ K \cdot r_{E',E'}^{\delta}(A') - K \cdot r_{E',E'}^{\delta}(A + \varepsilon) \ge 0$.

We then get,

$$\begin{split} & W_{K,E',E'}^{\delta}(A') - W_{K,E',E'}^{\delta}(A + \varepsilon) \\ &= (k^{-\delta} - 1)W_{K,E',E'}^{\delta}(A') + W_{K,E',E'}^{\delta}(A') - W_{K,E',E'}^{\delta}(A + \varepsilon) \\ &\ge (k^{-\delta} - 1)(w_{e',e'}(a') + K - \delta(|a'|^2 - |a''|^2 + W(A'))) \\ &\ge (k^{-\delta} - 1)(K - 8 - 3\delta) \ge (k^{-\delta} - 1)K/2 \ge (k^{-\delta} - 1) \|H(A')\|/4 \\ &\ge \|H(A) - H(A + \varepsilon)\|/8 \end{split}$$

which finishes the proof of the first inequality; the proof of the second one is completely parallel.

Corollary (3.5):

For $\delta = 10^{-6}$ there exists a continuous homogeneous order $2 - \delta_{\text{function}} u_j$ in the unit ball $B \subset \mathbb{R}^{24}$ which is a viscosity solution to a uniformly elliptic equation (1), i.e., $F(D^2 u_j) = 0$

Proof: Let Q be the space of the quadratic forms on \mathbb{R}^n equipped by its natural inner product $a \cdot (a + \varepsilon) = \operatorname{trace}(a(a + \varepsilon))_{\text{for}} a \in Q_{\text{and}} \varepsilon > 0$. Let us choose in the space Q an orthogonal coordinate system $z_1, \ldots, z_k, s, k = \frac{n(n+1)}{2} - 1$ such that s is the trace. Let $\pi: Q \to Z$ be the orthogonal

projection of Q onto the *z*-space. For $\varepsilon > 0$ we denote by $K_{1+\varepsilon}$ the cone:

$$K_{1+\varepsilon} = \{a \in Q: \text{there exists} C > 0 \text{ s.t.the eigenvalues of } a \in [C/(1 + \varepsilon), C(1 + \varepsilon)] \}$$

Since on Q the maximal eigenvalue of a quadratic form is a convex function and the minimal eigenvalue is a concave function it follows that K_A is a convex cone. Let $K_{1+\varepsilon}^*$ denote the adjoint cone of $K_{1+\varepsilon}$, that is, $K_{1+\varepsilon}^* = \{a + \varepsilon \in Q : (a + \varepsilon) \cdot c \ge 0 \text{ for all } c \in K_{1+\varepsilon}\}$

As an adjoint to a convex

the cone $K_{1+\varepsilon}^*$ is a convex cone itself. $\sum_{\text{Set}} L_{1+\varepsilon} = Q \setminus (K_{1+\varepsilon}^* \cup -K_{1+\varepsilon}^*)$ Notice that $a \in L_{1+\varepsilon}$ is equivalent to $a \cdot (a + \varepsilon) = 0$ for some $a + \varepsilon \in K_{1+\varepsilon, \text{ i.e., }} L_{1+\varepsilon}$ is a union of all hyper-planes Q $K_{1+\varepsilon}$ in in with normals Let $G \subset Q$ be a set. We say that $G_{\text{satisfies the}} (1 + \varepsilon)$ cone condition if for any two points $a, a + \varepsilon \in G$, the matrix $a - (a + \varepsilon) \in L_{1+\varepsilon}$

REFERENCES

- [1] L. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, Amer. Math. Soc., Providence, RI, 1995.
- [2] M.G. Crandall, H. Ishii, P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc.(N.S.) 27 (1) (1992) 1– 67.
- [3] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, Berlin, 1983.
- [4] N.V. Krylov, Nonlinear Elliptic and Parabolic Equations of Second Order, Reidel, 1987.
- [5] N. Nadirashvili,S. Vlădut, Nonclassical solutions of fully nonlinear elliptic equations, Geom. Funct. Anal. 17 (4) 2007.
- [6] N. Nadirashvili, Y. Yuan, Homogeneous solutions to fully nonlinear elliptic equation, Proc. Amer. Math. Soc. 134 (2006) 1647–1649.
- [7] Nikolai Nadirashvili&Serge Vladu, Singular viscosity solutions to fully nonlinear elliptic equations, J. Math. Pures Appl. 89 (2008) 107–113.
- [8] YousriS. M. Yasin& HabeebI. A. Ibrahim Local and Global weak solutions and Gradient Estimates for

Nonlinear Elliptic Equations, International Journal of Scientific & Engineering Research Volume 11, Issue 7, July-2020.