Near Difference Cordial Labeling Of Some Graphs

M.Abirami¹, Dr.S.Shenbaga Devi² ^{1, 2} Dept of MATHEMATICS ^{1, 2} Aditanar College of Arts and Science, Tiruchendur-TamilNadu

Abstract- Let $G_{be a}(p,q)_{graph. Let} f_{be a map from}$ $V(G)_{to} \{1,2,...,p-1, p+1\}$. For each edge $uv_{assign the label} |f(u) - f(v)| f_{is called "near}$ difference cordiallabeling", if f_{is} 1-1 and $|e_f(0) - e_f(1)| \leq 1_{where} e_f(1)_{and} e_f(0)$ denote the number of edges labeled with 1 and not labeled

with 1 respectively. A graph with a near difference cordial labeling is called a "near difference cordial graph".

Keywords- Near difference cordial graph, Near difference cordial labeling.

I. INTRODUCTION

A graph G is a finite nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of G called edges. Each pair $e=\{u,v\}$ of vertices in E is called edges or a line of G. In this paper, we proved that the graphs Path ($\mathbf{P_n}$), Fan ($\mathbf{F_n}$), H-graph ($\mathbf{H_n}$), $\mathbf{C_n}^+$, Ladder L_n are Near difference cordial graphs.

II. PRELIMINARIES

Let G be a (p,q) graph. Let f be a map from V(G) to $\{1,2,\ldots,p-1,p+1\}$. For each edge uv, assign the label $|f(u) - f(v)| \cdot f$ is called "near difference cordial labeling", if f is 1-1 and $|e_f(0) - e_f(1)| \leq 1$ where $e_f(1)$ and $e_f(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a near difference cordial labeling is called a "near difference cordial graph". In this paper, we proved that the graphs path ($\mathbf{P_n}$), Fan (F_n), H-graph ($\mathbf{H_n}$), C_n^+ , Ladder L_n are Near difference cordial graphs.

DEFINITION 2.1:

Path is a graph whose vertices can be listed in the order (u_1, u_2, \dots, u_n) such that the edges are $\{u_i u_{i+1}\}$ where i=1,2,3....n-1.

DEFINITION 2.2:

The join of G_1 and G_2 is the graph $G = G_1 + G_2$ with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2 \cup \{uv: u \in V_1, v \in V_2\}$. The graph $P_n + K_1$ is called a Fan.

DEFINITION 2.3:

H-graph \mathbf{H}_{n} is a graph obtained from two copies of path \mathbf{P}_{n} with vertices $(\mathbf{u}_{1}, \mathbf{u}_{2}, \dots, \mathbf{u}_{n})$ and $(\mathbf{v}_{1}, \mathbf{v}, \dots, \mathbf{v}_{n})$ by joining the vertices $\frac{u_{n+1}}{2}$ and $\frac{v_{n+1}}{2}$ if n is odd and $\frac{u_{n}}{2}$ and $\frac{v_{n}}{2} + 1$ if n is even.

DEFINITION 2.4:

 C_n^+ is a graph obtained from cycle of length n by attaching a pendant vertex from each vertex of the cycle.

DEFINITION 2.4:

The ladder graph L_n is a planar undirected graph with 2n vertices and 3n-2 edges. The ladder graph can be obtained as the Cartesian product of two path graphs, one of which has only one edge: $L_{n,1} = P_n \times P_2$

III. MAIN RESULT

Theorem 3.1: P_n is a near difference cordial graph

Proof:Let $G_{be} P_n$.

Let
$$V(G) = \{u_i : 1 \le i \le n\}$$
 and
 $E(G) = \{u_i u_{i+1} : 1 \le i \le n-1\}$
Define,
 $f: V(G) \to \{1, 2, ..., p-1, p+1\}$

Case 1:When ⁿ is odd

Subcase 1: $n \equiv 1 \pmod{4}$

$$\begin{array}{l} \text{Define} f(u_i) = i \,, \qquad 1 \le i \le \frac{n+1}{2} \\ f\left(u_{\frac{n+1}{2}+i}\right) = \frac{n+1}{2} + 2i \,, \ 1 \le i \le \frac{n-5}{4} \\ f(u_{n+1-i}) = \frac{n-1}{2} + 2i \,, \ 1 \le i \le \frac{n+3}{4} \end{array}$$

Subcase 2: $n \equiv 3 \pmod{4}$

 $\begin{array}{ll} {}_{\text{Define}} f(u_i) = i \,, & 1 \leq i \leq \frac{n+1}{2} \\ f\left(u_{\frac{n+1}{2}+i}\right) = \frac{n+1}{2} + 2i \,, & 1 \leq i \leq \frac{n+1}{4} \\ f(u_{n+1-i}) = \frac{n-1}{2} + 2i \,, & 1 \leq i \leq \frac{n-3}{4} \\ {}_{\text{The edge}} uv_{\text{, assign the label}} \left| f(u) - f(v) \right|. \end{array}$

$$e_f(0) = \frac{n-1}{2}$$
, $e_f(1) = \frac{n-1}{2}$

Therefore, the graph G satisfies the conditions $|e_f(0) - e_f(1)| \le 1.$

Hence P_n is a near difference cordial graph.

Case 2: When ⁿ is even

 $Subcase 1: n \equiv 0 \pmod{4}$

Define $f(u_i) = i$, $1 \le i \le \frac{n+2}{2}$

$$f\left(u_{\frac{n+2}{2}+i}\right) = \frac{n+2}{2} + 2i, \quad 1 \le i \le \frac{n}{4}$$
$$f(u_{n+1-i}) = \frac{n}{2} + 2i, \quad 1 \le i \le \frac{n-4}{4}$$

Subcase 2: $n \equiv 2 \pmod{4}$

$$\begin{array}{l} \text{Define} f(u_i) = i , \qquad 1 \le i \le \frac{n+2}{2} \\ f\left(u_{\frac{n+2}{2}+i}\right) = \frac{n+2}{2} + 2i , \quad 1 \le i \le \frac{n-6}{4} \\ f(u_{n+1-i}) = \frac{n}{2} + 2i , \quad 1 \le i \le \frac{n+2}{4} \end{array}$$

The edge $uv_{\text{assign the label}} |f(u) - f(v)|$.

$$e_f(0) = \frac{n-2}{2}$$
 and $e_f(1) = \frac{n}{2}$.

Therefore, the graph G satisfies the conditions $|e_f(0) - e_f(1)| \le 1.$

Hence P_n is a near difference cordial graph.

Example: When
$$n$$
 is odd

The near difference cordial labeling of P_5 with $n \equiv 1 \pmod{4}_{\text{as shown in Figure 1}}$

The near difference cordial labeling of P_7 with $n \equiv 3 \pmod{4}_{\text{as shown in Figure 2}}$

When n is even

The near difference cordial labeling of P_4 with $n \equiv 0 \pmod{4}_{\text{as shown in Figure 3}}$

The near difference cordial labeling of P_6 with $n \equiv 2 \pmod{4}_{\text{as shown in Figure 4}}$

Theorem 3.2: The Fan F_n is near difference cordial graph for all n.

Proof:Let $F_n = P_n + k_1$ Where, P_n is the path $u_1, u_2, ..., u_n$ and $V(k_1) = \{u\}.$

Define,

$$f \colon V(G) \to \{1, 2, \dots, p - 1, p + 1\}$$

Case 1:When ⁿ is odd

Page | 445

The vertex labels are,

$$f(u) = 1$$

$$f(u_i) = i + 1, 1 \le i \le n - 1$$

$$f(u_n) = n + 2$$

The induced edge labels are,

$$\begin{split} f^*(uu_i) &= i , 1 \leq i \leq n-1 \\ f^*(u_i u_{i+1}) &= 1 , 1 \leq i \leq n-2 \\ f^*(u_{n-1} u_n) &= 2 \\ f^*(uu_n) &= n+1 \end{split}$$

_{Here,} $e_f(0) = n_{\text{and}} e_f(1) = n - 1.$

Therefore, the graph F_n satisfies the conditions $|e_f(0) - e_f(1)| \le 1$.

Hence F_n is near difference cordial graph.

Case 2:When n is even

The vertex labels are,

$$f(u) = 1$$

 $f(u_i) = i + 1$, $1 \le i \le n - 1$
 $f(u_n) = n + 2$

The induced edge labels are,

$$f^{*}(uu_{i}) = i, 1 \le i \le n - 1$$

$$f^{*}(u_{i}u_{i+1}) = 1, 1 \le i \le \frac{n+2}{2}$$

$$f^{*}(u_{n-1}u_{n}) = 2$$

$$f^{*}(uu_{n}) = n + 1$$

 $_{\text{Here,}} e_f(0) = n_{\text{and}} e_f(1) = n - 1$

Therefore, the graph F_n satisfies the conditions $|e_f(0) - e_f(1)| \le 1.$

Hence, F_n is near difference cordial graph.

Example: The near difference cordial labeling of F_7 and F_6 are shown in Figure 5 &6

Fig.6

Theorem 3.3: The $H_{-\text{graph}}$ **G** is a near difference cordial graph.

Proof:Let v_1, v_2, \dots, v_n and u_1, u_2, \dots, u_n be the vertices of the graph G.

We define a labeling,

$$f\colon V(G)\to\{1,2,\ldots,p-1,p+1\}$$

Case 1:When n is odd

The vertex labels are,

$$f(u_i) = i, 1 \le i \le n$$

 $f(u_i) = n + 2i, 1 \le i \le \frac{n+1}{2}$

$$f\left(u_{\frac{n+1}{2}+i}\right) = 2n - 2i, 1 \le i \le \frac{n-1}{2}$$

The induced edge labels are,

$$f^{*}(v_{i}v_{i+1}) = 1, 1 \le i \le n-1$$

$$f^{*}(u_{i}u_{i+1}) = 2, 1 \le i \le \frac{n-1}{2},$$

$$\frac{n+3}{2} \le i \le n-1 f^{*}\left(u_{\frac{n+1}{2}}u_{\frac{n+3}{2}}\right) = 3,$$

$$f^{*}\left(v_{\frac{n+1}{2}}u_{\frac{n+1}{2}}\right) = 2n-i, \quad i = \frac{n-1}{2}$$

_{Here,} $e_f(0) = n_{\text{and}} e_f(1) = n - 1.$

Therefore, the graph G satisfies the conditions $|e_f(0) - e_f(1)| \le 1.$

Hence H-graph G is a near difference cordial graph.

Case 2:When n is even

The vertex labels are,

$$f(v_i) = i, 1 \le i \le n$$

$$f(u_i) = n + 2i - 1, 1 \le i \le \frac{n + 2}{2}$$

$$f\left(u_{\frac{n+2}{2}+i}\right) = 2n - 2i, 1 \le i \le \frac{n - 2}{2}$$

The induced edge labels are,

$$\begin{split} f^*(v_i v_{i+1}) &= 1, \ 1 \le i \le n-1 \\ f^*(u_i u_{i+1}) &= 2, \ 1 \le i \le \frac{n}{2}, \\ \frac{n+4}{2} \le i \le n-1 \\ f^*\left(u_{\frac{n+2}{2}} u_{\frac{n+4}{2}}\right) &= 3 \\ f^*\left(v_{\frac{n}{2}+1} u_{\frac{n}{2}}\right) &= n-1+i, \qquad i = \frac{n-2}{2} \end{split}$$

www.ijsart.com

Page | 446

$$_{\text{Here,}} e_f(0) = n_{\text{and}} e_f(1) = n - 1$$

Therefore, the graph G satisfies the conditions $|e_f(0) - e_f(1)| \le 1$.

Hence, $H_{\text{-graph}} G$ is near difference cordial graph.

1

2

4

Example: The near difference cordial labeling of $H_{5\&}H_{6}$ are shown in Figure 7 &8

7

9

11

8

Let

$$V(G) = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$$

$$E(G) \rightarrow \{u_i u_{i+1} | 1 \le i \le n - 1\} \cup \{u_i v_{n-i+1} | 1 \le i \le n\} \cup \{u_n u_1\}$$

Define,

$$f: V(G) \to \{1, 2, \dots, p-1, p+1\}$$

When n is odd, even

The vertex labels are,

$$\begin{array}{l} f(u_i) = i \,, \ 1 \leq i \leq n \\ f(v_i) = n + i \,, \qquad 1 \leq i \leq n - 1 \\ f(v_n) = 2n + 1 \end{array}$$

The induced edge labels are,

$$\begin{aligned} f^*(u_i u_{i+1}) &= 1 , 1 \le i \le n - 1 f^*(v_{i+1} u_{n-i}) = 2i + \\ 1 \le i \le n - 2 f^*(u_n u_1) = n - 1 \\ f^*(v_1 u_n) &= 1 \\ f^*(v_n u_1) &= 2n \end{aligned}$$

_{Here,} $e_f(0) = n_{and} e_f(1) = n$.

Therefore, the graph C_n^+ satisfies the conditions $|e_f(0) - e_f(1)| \le 1.$

Hence C_n^+ is near difference cordial graph.

Example: The near difference cordial labeling of $C_7^+ \& C_6^+$ are shown in Figure 9 & 10.

Theorem 3.4: C_n^+ is a near difference cordial graph for all n.

Proof:Let ^{*G*} be a graph.

Theorem 3.5: Ladder L_n is a near difference cordial graph.

Proof:Let ^{*G*} be a graph.

Let

$$\begin{split} V(G) &= \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\} \\ E(G) &\to \{u_i u_{i+1} \mid 1 \le i \le n-1\} \cup \{v_i v_{i+1} \\ \{u_i v_i \mid 2 \le i \le n-1\} \end{split}$$

Define,

$$f\colon V(G)\to \{1,2,\ldots,p-1,p+1\}$$

Case 1:When n is odd

Define
$$f(u_i) = i$$
, $1 \le i \le n$
 $f(v_i) = n + i$, $1 \le i \le \frac{n-1}{2} f(v_{n-3}) = 2n-2$
 $f(v_{n-i+1}) = \frac{3n-3}{2} + 2i$, $1 \le i \le \frac{n-1}{2}$
The edge uv , assign the label $|f(u) - f(v)|$.

_{Here,}
$$e_f(0) = \frac{3n-3}{2}$$
 and $e_f(1) = \frac{3n-5}{2}$

Therefore the graph L_n satisfies the conditions $|e_f(0) - e_f(1)| \le 1.$

Hence L_n is near difference cordial graph.

Case 2:When n is even

Define
$$f(u_i) = i, \ 1 \le i \le n$$

 $f(v_i) = n + i, 1 \le i \le \frac{n}{2}$
 $f(v_{n-3}) = 2n - 2$
 $f(v_{n-i+1}) = \frac{3n}{2} + 2i - 1,$
 $1 \le i \le \frac{n-2}{2}$

The edge
$$uv$$
, assign the label $|f(u) - f(v)|$.

_{Here,}
$$e_f(0) = \frac{3n-4}{2}$$
 and $e_f(1) = \frac{3n-4}{2}$.

 $|1|_{e_f}^{\text{Therefore the graph}} L_n$ satisfies the conditions $|1|_{e_f}^{\text{Therefore the graph}} L_n = 1$.

Hence L_n is near difference cordial graph.

Example: The near difference cordial labeling of $L_{7\&}L_8$ are shown in Figure 11 &12.

Page | 448

REFERENCES

- I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars combinatorial 23 (1987), 201-207.
- [2] J. A. Gallian, A Dynamic survey of graph labeling, the electronic journal of combinatorics 18 (2013) #Ds6.
- [3] F. Harary, Graph theory, Addision Wesley, New Delhi (1969).