Near Difference Cordial Labeling Of Some Graphs

M.Abirami ${ }^{1}$, Dr.S.Shenbaga Devi ${ }^{2}$
${ }^{1,2}$ Dept of MATHEMATICS
${ }^{1,2}$ Aditanar College of Arts and Science, Tiruchendur-TamilNadu

${ }_{\text {Abstract- Let }} G_{\text {be a }}(p, q)_{\text {graph. Let }} f_{\text {be a map from }}$ $V(G)_{\text {to }}\{1,2, \ldots, p-1, p+1\}$. For each edge $u v_{\text {sassign the label }}|f(u)-f(v)| \cdot f_{\text {is called "near }}$ difference cordiallabeling", $i f$ is 1-1 and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1_{\text {where }} e_{f}(1){ }_{\text {and }} e_{f}(0)$
denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a near difference cordial labeling is called a "near difference cordial graph".

Keywords- Near difference cordial graph, Near difference cordial labeling.

I. INTRODUCTION

A graph G is a finite nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of G called edges. Each pair $\mathrm{e}=\{\mathrm{u}, \mathrm{v}\}$ of vertices in E is called edges or a line of G. In this paper, we proved that the graphs Path $\left(\mathrm{P}_{\mathrm{n}}\right)$, Fan $\left(F_{n}\right)$,H-graph $\left(\mathrm{H}_{\mathrm{n}}\right), C_{n}{ }^{+}$, Ladder L_{n} are Near difference cordial graphs.

II. PRELIMINARIES

Let $G_{\text {be a }}(p, q)_{\text {graph. Let }} f_{\text {be a map from }}$ $V(G)$ to $\{1,2, \ldots, p-1, p+1\}$. For each edge $u v_{\text {rassign the label }}|f(u)-f(v)| \cdot f$ is called "near difference cordial labeling", ${ }^{\text {i }} f$ is 1-1 and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(1)$ and $e_{f}(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a near difference cordial labeling is called a "near difference cordial graph". In this paper, we proved that the graphs path (P_{n}), Fan $\left(F_{n) \text {, H- }}\right.$ graph $\left(\mathrm{H}_{\mathrm{n}}\right), C_{n}{ }^{+}$, Ladder L_{n} are Near difference cordial graphs.

DEFINITION 2.1:

Path is a graph whose vertices can be listed in the order $\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots \mathrm{u}_{\mathrm{n}}\right)$ such that the edges are $\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right\}$ where $\mathrm{i}=1,2,3 \ldots . . . \mathrm{n}-1$.

DEFINITION 2.2:

The join of G_{1} and G_{2} is the graph $G=G_{1}+G_{2}$ with vertex set $V=V_{1} \cup V_{2 \text { and edge }}$ $E=E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}, v \in V_{2}\right\}$.The graph $P_{n}+K_{1 \text { is called a Fan. }}$.

DEFINITION 2.3:

H-graph H_{n} is a graph obtained from two copies of path P_{n} with vertices $\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots \mathrm{u}_{\mathrm{n}}\right)$ and $\left(\mathrm{v}_{1}, \mathrm{v}, \ldots . \mathrm{v}_{\mathrm{n}}\right)$ by joining the vertices $\frac{u_{n+1}}{2}$ and $\frac{V_{n+1}}{2}$ if n is odd and $\frac{U \frac{n}{2}}{}$ and $\frac{V n_{2}^{2}}{2}$ if n is even.

DEFINITION 2.4:

$$
C_{n}{ }^{+} \text {is a graph obtained from cycle of length } n_{\text {by }}
$$ attaching a pendant vertex from each vertex of the cycle.

DEFINITION 2.4:

The ladder graph L_{n} is a planar undirected graph with 2 n vertices and $3 \mathrm{n}-2$ edges. The ladder graph can be obtained as the Cartesian product of two path graphs,one of which has only one edge: $L_{n, 1}=P_{n} \times P_{2}$

III. MAIN RESULT

Theorem 3.1: P_{n} is a near difference cordial graph

Proof:Let $G_{\text {be }} P_{n}$.

$$
V(G)=\left\{u_{i}: 1 \leq i \leq n\right\}
$$

$$
E(G)=\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} .
$$

Define,
$f: V(G) \rightarrow\{1,2, \ldots, p-1, p+1\}$

Case 1:When $\boldsymbol{n}_{\text {is odd }}$

Subcase 1: $n \equiv 1(\bmod 4)$

$$
\text { Define } f\left(u_{i}\right)=i, \quad 1 \leq i \leq \frac{n+1}{2}
$$

$f\left(u_{\frac{n+1}{2}+i}\right)=\frac{n+1}{2}+2 i, 1 \leq i \leq \frac{n-5}{4}$
$f\left(u_{n+1-i}\right)=\frac{n-1}{2}+2 i, \quad 1 \leq i \leq \frac{n+3}{4}$

Subcase 2: $n \equiv_{3(\bmod 4)}$

$$
\text { Define } f\left(u_{i}\right)=i, \quad 1 \leq i \leq \frac{n+1}{2}
$$

$f\left(u_{\frac{n+1}{2}+i}\right)=\frac{n+1}{2}+2 i, 1 \leq i \leq \frac{n+1}{4}$
$f\left(u_{n+1-i}\right)=\frac{n-1}{2}+2 i, 1 \leq i \leq \frac{n-3}{4}$
The edge $u v_{\text {, assign the label }}|f(u)-f(v)|$.
Here, $e_{f}(0)=\frac{n-1}{2}, e_{f}(1)=\frac{n-1}{2}$.
Therefore, the graph G satisfies the conditions $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Hence P_{n} is a near difference cordial graph.

Case 2:When $n_{\text {is even }}$
Subcase 1: $n \equiv 0(\bmod 4)$

$$
\text { Define } f\left(u_{i}\right)=i, \quad 1 \leq i \leq \frac{n+2}{2}
$$

$f\left(u_{\frac{n+2}{2}+i}\right)=\frac{n+2}{2}+2 i, 1 \leq i \leq \frac{n}{4}$
and $f\left(u_{n+1-i}\right)=\frac{n}{2}+2 i, \quad 1 \leq i \leq \frac{n-4}{4}$
Subcase 2: $n \equiv 2(\bmod 4)$
$\begin{array}{cc}\text { Define } f\left(u_{i}\right)=i, & 1 \leq i \leq \frac{n+2}{2} \\ f\left(u_{\frac{n+2}{2}+i}\right)=\frac{n+2}{2}+2 i, & 1 \leq i \leq \frac{n-6}{4}\end{array}$
$f\left(u_{n+1-i}\right)=\frac{n}{2}+2 i, \quad 1 \leq i \leq \frac{n+2}{4}$
The edge $u v_{\text {assign the label }}|f(u)-f(v)|$.
Here, $e_{f}(0)=\frac{n-2}{2}$ and $e_{f}(1)=\frac{n}{2}$.
Therefore, the graph G satisfies the conditions $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Hence P_{n} is a near difference cordial graph.
Example:When $n_{\text {is odd }}$
The near difference cordial labeling of P_{5} with $n \equiv 1(\bmod 4)_{\text {as shown in Figure }} 1$

Fig. 1

The near difference cordial labeling of P_{7} with $n \equiv 3(\bmod 4)$ as shown in Figure 2

Fig. 2

When $n_{\text {is even }}$

The near difference cordial labeling of P_{4} with $n \equiv 0(\bmod 4)$ as shown in Figure 3

Fig. 3
The near difference cordial labeling of P_{6} with $n \equiv 2(\bmod 4)_{\text {as shown in Figure } 4}$

Fig. 4
Theorem 3.2:The Fan $F_{n_{\text {is near difference cordial graph for }}}$ all n.

Proof:Let $F_{n}=P_{n}+k_{1}$

Where, P_{n} is the path $u_{1}, u_{2}, \ldots, u_{n}$
and $V\left(k_{1}\right)=\{u\}$.

Define,
$f: V(G) \rightarrow\{1,2, \ldots, p-1, p+1\}$

The vertex labels are,
$f(u)=1$
$f\left(u_{i}\right)=i+1,1 \leq i \leq n-1$
$f\left(u_{n}\right)=n+2$

The induced edge labels are,
$f^{*}\left(u u_{i}\right)=i, 1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)=1,1 \leq i \leq n-2$
$f^{*}\left(u_{n-1} u_{n}\right)=2$
$f^{*}\left(u u_{n}\right)=n+1$
Here, $e_{f}(0)=n_{\text {and }} e_{f}(1)=n-1$.

Therefore, the graph F_{n} satisfies the conditions $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.
Hence F_{n} is near difference cordial graph.

Case 2: When $\boldsymbol{n}_{\text {is even }}$

The vertex labels are,
$f(u)=1$
$f\left(u_{i}\right)=i+1, \quad 1 \leq i \leq n-1$
$f\left(u_{n}\right)=n+2$
The induced edge labels are,
$f^{*}\left(u u_{i}\right)=i, 1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)=1,1 \leq i \leq \frac{n+2}{2}$
$f^{*}\left(u_{n-1} u_{n}\right)=2$
$f^{*}\left(u u_{n}\right)=n+1$
Here, $e_{f}(0)=n_{\text {and }} e_{f}(1)=n-1$
Therefore, the graph F_{n} satisfies the conditions $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Case 1: When n is odd

Hence, F_{n} is near difference cordial graph.

Example:The near difference cordial labeling of F_{7} and F_{6} are shown in Figure $5 \& 6$

Fig. 5

Fig. 6
Theorem 3.3:The $H_{\text {-graph }} G$ is a near difference cordial graph.

Proof:Let $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the graph G.

We define a labeling,
$f: V(G) \rightarrow\{1,2, \ldots, p-1, p+1\}$

Case 1:When $n_{\text {is odd }}$

The vertex labels are,
$f\left(u_{i}\right)=i, 1 \leq i \leq n$
$f\left(u_{i}\right)=n+2 i, 1 \leq i \leq \frac{n+1}{2}$

$$
f\left(u_{\frac{n+1}{2}+i}\right)=2 n-2 i, 1 \leq i \leq \frac{n-1}{2}
$$

The induced edge labels are,

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=1,1 \leq i \leq n-1 \\
& f^{*}\left(u_{i} u_{i+1}\right)=2,1 \leq i \leq \frac{n-1}{2}, \\
& \frac{n+3}{2} \leq i \leq n-1 f^{*}\left(u_{\frac{n+1}{}} u_{\frac{n+3}{}}\right)=3, \\
& f^{*}\left(v_{\frac{n+1}{}}^{2} u_{\frac{n+1}{2}}\right)=2 n-i, \quad i=\frac{n-1}{2} \\
& \text { Here, } e_{f}(0)=n_{\text {and }} e_{f}(1)=n-1 .
\end{aligned}
$$

Therefore, the graph G satisfies the conditions $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Hence $H_{\text {-graph }} G_{\text {is a near difference cordial graph. }}$

Case 2:When $n_{\text {is even }}$

The vertex labels are,
$f\left(v_{i}\right)=i, 1 \leq i \leq n$
$f\left(u_{i}\right)=n+2 i-1,1 \leq i \leq \frac{n+2}{2}$
$f\left(u_{\frac{n+2}{2}+i}\right)=2 n-2 i, 1 \leq i \leq \frac{n-2}{2}$

The induced edge labels are,
$f^{*}\left(v_{i} v_{i+1}\right)=1,1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)=2, \quad 1 \leq i \leq \frac{n}{2}$,
$\frac{n+4}{2} \leq i \leq n-1$
$f^{*}\left(u_{\frac{n+2}{2}} u_{\frac{n+4}{2}}\right)=3$
$f^{*}\left(v_{\frac{n}{2}+1} u_{\frac{n}{2}}\right)=n-1+i, \quad i=\frac{n-2}{2}$

Here, $e_{f}(0)=n_{\text {and }} e_{f}(1)=n-1$
Therefore, the graph G satisfies the conditions $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Hence, $H_{\text {-graph }} G_{\text {is near difference cordial graph. }}$
Example: The near difference cordial labeling of $H_{5 \&} H_{6}$ are shown in Figure $7 \& 8$

Fig. 7

Fig. 8
Theorem 3.4: $\mathrm{C}_{n}{ }^{+}$is a near difference cordial graph for all n . Proof:Let $G_{\text {be a graph. }}$

Let
$V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$
$E(G) \rightarrow\left\{u_{i} u_{i+1} \mid 1 \leq i \leq n-\right.$
1\} $\cup\left\{u_{i} v_{n-i+1} \mid 1 \leq i \leq n\right\} \cup$ $\left\{u_{n} u_{1}\right\}$

Define,
$f: V(G) \rightarrow\{1,2, \ldots, p-1, p+1\}$
When $n_{\text {is odd, even }}$
The vertex labels are,
$f\left(u_{i}\right)=i, 1 \leq i \leq n$
$f\left(v_{i}\right)=n+i, \quad 1 \leq i \leq n-1$
$f\left(v_{n}\right)=2 n+1$
The induced edge labels are,
$f^{*}\left(u_{i} u_{i+1}\right)=1,1 \leq i \leq n-1 f^{*}\left(v_{i+1} u_{n-i}\right)=2 i+$
$1 \leq i \leq n-2 f^{*}\left(u_{n} u_{1}\right)=n-1$
$f^{*}\left(v_{1} u_{n}\right)=1$
$f^{*}\left(v_{n} u_{1}\right)=2 n$
Here, $e_{f}(0)=n_{\text {and }} e_{f}(1)=n$.
Therefore, the graph $C_{n}{ }^{+}$satisfies the conditions $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Hence $C_{n}{ }^{+}$is near difference cordial graph.
Example:The near difference cordial labeling of $C_{7}{ }^{+}{ }_{\&} C_{6}{ }^{+}$ are shown in Figure 9 \& 10.

Fig. 9

Fig. 10
Theorem 3.5: Ladder $L_{n \text { is a near difference cordial graph. }}$. Proof:Let $G_{\text {be a graph. }}$

Let
$V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$
$E(G) \rightarrow\left\{u_{i} u_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1} \mid 1\right.$ $\left\{u_{i} v_{i} \mid 2 \leq i \leq n-1\right\}$

Define,

$$
f: V(G) \rightarrow\{1,2, \ldots, p-1, p+1\}
$$

Hence L_{n} is near difference cordial graph.
Example: The near difference cordial labeling of $L_{7 \&} L_{8}$ are shown in Figure 11 \& 12 .

Fig. 11

Fig. 12

REFERENCES

[1] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars combinatorial 23 (1987), 201207.
[2] J. A. Gallian, A Dynamic survey of graph labeling, the electronic journal of combinatorics 18 (2013) \#Ds6.
[3] F. Harary, Graph theory, Addision Wesley, New Delhi (1969).

