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Abstract- This paper defines a conjecture on the coloring of 
planar graph, known as the perfect coloring of planar graph. 
We intend to study the relation between semi perfect coloring 
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I. INTRODUCTION 
 
 In this section, we present a brief survey of those 
results of graph theory, which we shall need shortly. The 
reader is referred to [7, 8, 10] for a fuller treatment of the 
subject. 
 
1.1 Graphs: A graph G is an ordered pair (V (G), E (G) ) 

where i) V(G) is a non empty finite set of elements , 
known as vertices. V (G) is known as vertex set. ii) E(G) 
is a family of unordered pairs ( not necessarily distinct ) 
of elements of V, known as edges of G. E(G) is known as 
Edge set. [7] 
 

1.2 Planar Graph: A graph G is a planar graph if it is 
possible to represent it in the plane such that no two edges 
of the graph intersect except possibly at a vertex to which 
they are both incident. Any such drawing of planar graph 
G in a plane is a planar embedding of G.[8] 
 

1.3 * isomorphism: Two graphs are said to be *isomorphic if 
their geometric duals are isomorphic. [4]          
 
1.4 Four Color Map Problem: Planar map is a set of 
pairwise disjoint subsets of the plane, known as regions of the 
map. Two regions a map are adjacent if they have a common 
boundary that is not a corner. A vertex or point of a map is 
said to be corner if it is a common point of three or more 
regions. A coloring of a graph is an assignment of colors to its 
vertices (or regions) so that no two adjacent vertices (or 
regions) have the same color. The set of all vertices (or 
regions) with same color in graph, is called a color class. [1] 
 
Theorem 1.1: (Four Color Map Theorem) Every planar map 
can be colored with four or fewer colors 

The Four Color Conjecture was first stated 200 years 
ago and finally proved conclusively in 1976. The professor of 
mathematics, Augustus De Morgan (1806-71) and his friend 
William Rowan Hamilton studied this theorem and gave first 
proof. In 1879, Alfred Kempe, published a short paper on 
coloring of maps. He added some other ideas of coloring. In 
1879, Alfred Kempe published this proof in the American 
Journal of Mathematics in simple versions. In 1980, Tait P.G. 
offered independent solution to this problem. After 
collaborating with John Koch on the problem of reducibility, 
in 1976, Kenneth Appel and Wolfgang Haken gave the 
complete proof to the four color conjecture by reducing the 
testing problem to an unavoidable set with 1936 
configurations. Because of the computer based proof, many 
Mathematicians were not agreeing with this proof. However, 
many proofs written by different Mathematicians have been 
found to be faulty. So all we have been waiting for the simple 
proof of this theorem. [2, 3, 4] 
 

This problem is stated by Douglas B. West. He has 
published it in his book. He state that “The vertices and edges 
of a graph G can be colored with Δ(G) + 2 colors such that 
adjacent vertices have different colors, incident edges have 
different colors and incident edge and vertices have different 
colors.” [9] 
 

This type of coloring is known as Semi Perfect 
Coloring. If α minimum number of colors are required to color 
any planar graph G by semi perfect coloring, then it is denoted 
by  SPC (G) = α 
 
1.5 HB Graph: A region or face R of a planar graph is said to 
be a pivot region of graph if all other regions of graph are 
adjacent to R. Every region of a complete graph on four 
vertices (K4) is a pivot region. So K4 has four pivot     regions. 
[6] 
 

The number of pivot regions of a planar graph is 
known as Pivot Region Number of that Graph. It is denoted by 
PRN (G). A planar graph is said to be HB graph if it has a 
pivot region. [6] 
 
 



National Conference on Emerging Trends in Science and Technology                                          ISSN [ONLINE]: 2395-1052 
 

Page | 24                                                                                                                                                                     www.ijsart.com 
 

II. MAIN RESULTS 
 

2.1 Open Problem on Coloring of Planar Graphs: 
 
Conjecture: How many minimum colors will be required to 
color planar graph such that 
 

1. Adjacent vertices have different colors. 
2. Incident edges have different colors. 
3. Adjacent regions have different colors. 
4. A region, boundary edges and boundary vertices of 

that region have different colors. 
 

If β number of colors are required to color any graph 
G by perfect coloring, then it is denoted by PC (G) = β. This 
type of coloring is known as Perfect Coloring. We have 
proved this open problem partially. 

 
Theorem 2.1  If G is any planar graph then SPC (G) ≤ PC 
(G). 
 
Proof: By the definitions of SPC (G) and PC (G), clearly SPC 
(G) is less than PC (G). Without loss of generality, assume 
that G is a rose1 graph with 3 edges as given below. 
 

 
Figure 2.1: Rose 1 Graph 

 
In a graph G, 3 edges are incident at only one vertex. 

So these edges are adjacent to each other. Therefore assign 
three different colors to these edges and one different color to 
the vertex. Thus SPC (G) = 4. Use same four colors only for 
coloring of regions with required conditions. So PC (G) = 4.  
Apply same judgment for rose 1 graph with any number of 
edges. This implies       SPC (G) = PC (G). Thus SPC (G) ≤  
PC (G). □ 
 
Theorem 2.2 If G is a null graph with n vertices then SPC (G) 
= 1 and                         PC (G) =2. 
 
Proof: Let G be a null graph with n vertices say V1, V2, . . . 
Vn. Graph G has only one region R and all these n vertices lie 
in R. These vertices are totally disconnected. So assign same 

color to these vertices and different color to the region R. Thus 
SPC (G) = 1 and PC (G) = 2. □ 
 
Theorem 2.3 If G is a chain graph on n ≥ 3 vertices then SPC 
(G) = ∆ (G) + 1 and    PC (G) = ∆ (G) + 2, where ∆ (G) = 
Highest degree of a vertex in G. 
 
Proof: Let G be a chain graph on n ≥ 2 vertices say V1, V2, . . . 
Vn, such that Vi is adjacent to Vi +1, for i = 1, 2, ..... n-1. So V1, 
Vn are pendent vertices. Assign color 1 to vertex V1, color 2 to 
edge e1 = {V1, V2} and color 3 to vertex V2 in graph G. An 
edge     e2 = {V2, V3} is adjacent to e1 and incident at V2. So 
assign color to an edge e2 different from colors 2 and 3. 
Therefore assign a color 1 to an edge e2, color 2 to vertex V3 
and color 3 to an edge e3 = {V3, V4}.  
 

 
Figure 2.2: Chain Graph 

 
The same sequence of colors is repeated finitely 

many times. Hence, 3 colors are required to color chain graph 
according to semi perfect coloring. Graph G has only one 
region. So assign a different color to this region. In chain 
graph G, ∆ (G) = 2. Thus SPC (G) = 3 =   ∆ (G) + 1 and PC 
(G) = 4 = ∆ (G) + 2. □ 
 
Theorem 2.4 If G is a star graph on n ≥ 3 vertices then SPC 
(G) = ∆ (G) + 1 and      PC (G) = ∆ (G) + 2, where ∆ (G) = 
Highest degree of a vertex in G. 
 
Proof: Let G be a star graph on n vertices say V1, V2, . . . Vn. 
Subsequently, graph G has one vertex of degree n-1 and n-
1pendent vertices. 
 

 
Figure 2.3: Star Graph 

 
Assign color 1 to vertex Vn. All edges are incident at 

Vn. So assign different colors to each edge. Assign color 2 to 
the first edge e1 = {V1, Vn}, color 3 to e2 = {V2, Vn},..., color n 
to an edge en-1 = {Vn-1, Vn}. Consequently assign colors 3, 4, 
... n-1, 1, 2 to vertices V1, V2, . . . Vn-1 respectively.  
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Thus SPC (G) = n = ∆ (G) + 1, where ∆ (G) = n-1. 
 

 As graph G has only one region so assign different 
color to that region. Therefore   PC (G) = n + 1 = ∆ (G) + 2. □ 

 
Theorem 2.5 If G is a tree graph on n ≥ 3 vertices then SPC 
(G) = ∆ (G) + 1 and      PC (G) = ∆ (G) + 2, where ∆ (G) = 
Highest degree of a vertex in G. 
 
Proof: Let G be a tree on n ≥ 3 vertices. Find the largest 
subgraph H of a tree which is a star graph. By above theorem 
5.27, SPC (H) = ∆ (H) + 1 and PC (H) = ∆ (H) + 2. Therefore 
same numbers of colors are sufficient for coloring of graph G.  
Thus,  SPC (G) = ∆ (G) + 1 and PC (G) =   ∆ (G) + 2. □ 
 
Theorem 2.6  If Cn is a cycle graph on n ≥ 3 vertices then 
SPC (C3n) = 3, SPC (C3n+1)   = 4, SPC (C3n+2) = 4 and PC 
(C3n) = 5, PC (C3n+1) = 6, PC (C3n+2) = 6. 
 
Proof: Without loss of generality, suppose G, H and K are 
graphs on 6, 5 and 7 vertices as given in figure 5.12.  
 

In a graph G, we have six vertices as A, B, C, D, E, F 
and edges e1, e2, e3, e4, e5, e6 as shown in figure 5.12  Consider 
the closed path A-e1-B- e2 -C-e3-D- e4 –E- e5-F- e6-A. Now, 
assign colors successively 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 
3, 1, 2, 3, 1 to every element of the path. Therefore SPC (G) = 
3.  
 

 
G  H     K 

Figure 2.4: Cycle Graphs 
 

There are two regions in G and all vertices and edges 
lie on the boundary of those regions. So assign two different 
colors to these regions. Thus PC (G) = 3 + 2 = 5. 

 
In a graph H, we have five vertices say P, Q, R, S, T 

and five edges say a, b, c, d, e. Consider the closed path P-a- 
Q-b- R-c- S-d-T-e-P. Now assign a different color to each 
element of the path. We assign colors 1, 2, 3, 1, 2, 3, 1, 2, 3 

respectively to P-a- Q-b- R-c- S-d-T. An edge e = {T, P} is 
adjacent to edge d.  

 
So we have to assign color different from 1, 2, 3 to 

edge e. Consequently assign color 4 to edge e. Thus SPC (H) 
= 4 and PC (G) = 4 + 2 = 6. 
 

In a graph K, the closed path is P-a- Q-b- R-c- S-d-T-
e-U-f-V-g-P. We assign colors 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 4, 3, 
2, 4, 1 respectively to P – a - Q – b – R – c - S- d -T- e -U- f -
V- g -P. Thus SPC (H) = 4 and PC (G) = 4 + 2 = 6. 

 
Hence, in general SPC (C3n) = 3, SPC (C3n+1) = 4, 

SPC (C3n+2) = 4 and PC (C3n) = 5,     PC (C3n+1) = 6 and PC 
(C3n+2) = 6. □ 
 
Theorem 2.7 If G is a rose graph with m ≥ 2 loops then SPC 
(G) = m + 1 and        PC (G) = m + 2.  
 
Proof: Without loss of generality, assume that H is a rose 
graph with five loops as given below. 

 
Figure 2.5: Rose Graph 

 
Assign color 1 to vertex V. Five different edges are 

incident at V, so assign five different colors to edges a, b, c, d 
and e. Now assign color of edge a to region P, color of edge b 
to region Q, color of edge c to region R, color of edge d to 
region S, color of edge e to region T. The vertex V and these 
five loops are the boundaries of an infinite region. So assign a 
different color to this infinite region. Thus we required seven 
different colors for the perfect coloring of H. Therefore SPC 
(H) = 5 + 1 = 6 and     PC (H) = 5 + 2 = 7.  

 
In general, if G is a rose graph with m loops then 

assign m colors to these m loops. We use same colors for 
regions, one different color for vertex and one more different 
color for an infinite region. Thus SPC (G) = m + 1 and PC (G) 
= m + 2. □ 
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