13SART - Volume 4 Issue 11 -NOVEMBER 2018

ISSN [ONLINE]: 2395-1052

Detection And Prevention of A Buffer Overflow
Attacks Based on Hybrid Approach

L V.Nithyal, R.Regan 2
"~ Department of Computer Science and Engineering
! University College of Engineering Panruti, India, ?University College of Engineering Villupuram, India.

Abstract- Buffer overflows vulnerabilities to compromise
critical data structures. We present a black-box testing
approach to detecting buffer overflow vulnerabilities. Our
approach is motivated by a reflection on how buffer overflow
vulnerabilities are exploited in practice. In most cases the
attacker can influence the behavior of a target system only by
controlling its external parameters. Therefore, launching a
successful attack often amounts to a clever way of tweaking the
values of external parameters. We simulate the process
performed by the attacker, but in a more systematic manner. In
particular, our approach exploits the fact that combinatorial
testing often achieves a high level of code coverage. We have
implemented our approach in a prototype tool called Trance.
The results of applying Trance to five open-source programs
show that our approach can be very effective in detecting buffer
overflow vulnerabilities.

Keywords- Black box testing, Buffer over flow Attack,
Hybrid approach

I. INTRODUCTION

In computing, a web application or web app is a
client-server software application in which the client runs in
a web browser. A Web application is an application program
that is stored on a remote server and delivered over the
Internet through a browser interface. Examples of browser
applications are simple office software (word processors,
online spreadsheets, and presentation tools), but can also
include more advanced applications such as project
management, computer-aided design, video editing and
point-of-sale. At a high level, web application security draws
on the principles of application security but applies them
specifically to Internet and Web systems [1]. One of the
most serious input hacks is a buffer overflow that
specifically targets input fields in web applications. If
someone managed to exploit a buffer overflow in a Web
application, it would result in a critical situation.

A. Buffer over flow Attack

By this attack, we are trying to get past Client-Side
Validations which come in effect due to the usage of Web-
Browser. Since, we are not working with Browser but directly

Page | 39

manipulating the HTML Source file we are able to bypass
the Client Side Validations such as Java script sand
“MAXLENGTH" field present in “input” tag fields. The
“input” tags fetched from the HTML source file are
embedded with an arbitrary long String in the, value
attribute and resubmission occurs. The random

String is generated by a ,,randomizer® function. If
the Server does not support proper Server-Side Validation,
then a possible crash can take place at the Server end. There
is noted by observing the HTTP Status codes received as a
response whether the attack was a success or not.

Il. LITERATURE SURVEY
A. Loop-extended symbolic execution and generalization

Shahriar, H., Haddad, H.M., Vaidya describes
Mixed concrete and symbolic execution is an important
technique for finding and understanding Software bugs,
including security relevant ones. However, existing symbolic
execution techniques are limited to examining one execution
path at a time, in which symbolic variables reflect only direct
data dependencies. We introduce loop-extended symbolic
execution, a generalization that broadens the coverage of
symbolic results in programs with loops. It introduces
symbolic variables for the number of times each loop
executes, and links these with features of a known input
grammar such as variable-length or repeating fields. Our tool
finds vulnerabilities in both a standard benchmark suite and
3 real-world applications, after generating only a handful of
candidate inputs, and also diagnoses general vulnerability
conditions [2].

B. Buffer over flow vulnerabilities at run time

Charier, H., Zulkernine, M states Buffer over flow
program defects that can cause a buffer to overflow at runtime.
Many security attacks exploit buffer overflow vulnerabilities to
compromise critical data structures. In this paper, we present a
black-box testing approach to detecting buffer overflow
vulnerabilities. Our approach is motivated by a reflection on
how buffer overflow vulnerabilities are exploited in practice. In
most cases the attacker can influence the

www.ijsart.com

13SART - Volume 4 Issue 11 -NOVEMBER 2018

behavior of a target system only by controlling its external
parameters. Therefore, launching a successful attack often
amounts to a clever way of tweaking the values of external
parameters [3].

C. Fizzing a black box and white box testing

Padmana bruin, B.M., Tan Many describes that
security attacks exploit buffer overflow vulnerabilities to
compromise critical data structures, so that they can
influence or even take control over the behavior of a target
system. Our approach is a specification-based or black-box
testing approach. That is, we generate test data based on a
specification of the subject program, without analyzing the
source code of the program. The specification required by
our approach is lightweight and does not have to be formal.
In contrast, white-box testing approaches derive test inputs
by analyzing the data and/or control structure of the source
code. Black-box testing has the advantage of requiring no
access to the source code, and is widely used in practice[4].

D. Buffer over flow attack parameters for using security
testing

Wagner, D., Foster, J.S., Brewer, E.A. et al. states
Security testing essentially needs to do the same thing, but in
a more systematic manner and with a good in tents as an
effort to validate this hypothesis, we inspected buffer
overflow vulnerability reports in three public databases[5].

E. Single path loop using buffer overflow attack

Saxena, P.Poosankam, P., McCamant, S describes,
when single-path symbolic execution is applied to test case
generation to increase coverage, it will be unable (in one
iteration)to generate an input that forces execution down a
different branch than in the original execution, if taking that
branch is only feasible with a different number of loop
iterations. In other words, in single-path symbolic execution,
the values of a symbolic variable reflect only the data
dependencies on the symbolic inputs control dependencies,
including loop dependencies, are ignored [6].

I11. PROPOSED SYSTEM

There are more than million websites on the
Internet. With such at remand ours growth, the issue of
security has achieved a wide angle and is very important due
to the following reasons:

Most of the transactions are Online
Usage of Legacy

Code Page | 40

ISSN [ONLINE]: 2395-1052

User Trust factor
Shift in focus of Attacker towards monetary benefits
poorly written code

There are many more reasons besides these. The
security can be maintained by having Secure Coding
practice. But, that is not always the case. Hence, there is a
need for an application tool which would be able to uncover
vulnerabilities besides those which are already well-known.
If such vulnerabilities are uncovered, then the security of the
product can been hence and guaranteed to a large extent.
Software Testers would benefit tremendously from such a
utility. We look into the following categories of errors:
Failure to handle exceptions
Failure to validate input on server

A. BOF Detector BOF Detector is a Web Site
vulnerability detector which rigorously injects malformed
data and SQL injections within the input tag fan HTML
source file fetched from the Web Server. It then analyzes the
HTTP status codes received as a response from the Web
Server as a possible indication for hidden vulnerabilities.
There are many BOF already present in the market written in
Pearland Python.BOF Detector, written exclusively in Java
is going to be very popular and can be used by Web Portal
Testing teams before putting their Site into Production.

BOF Detector is a context-aware type of BOF whereby
it is aware of the HTML source file to be BOF Our
projects cope is limited to dealing with "input “ tag
expressions. Steps involved in the case of BOF Detector
are as follows:

BOF Detector fetches a HTML source file from a URL
using HTTP Connection class.

BOF Detector traverses through the HTML Source file
and populates a List containing all the different types of
input commands corresponding to a particular form on a
Web Page file.

Random strings are generated and embedded into the,,
input® tags in the "value” field Attribute.

Page is resubmitted to the,, action “field specified in
the form tag.

There sponge received from the Server is in the
form of HTTP Status Codes and is used for analysis
regarding the wulnerability status of a Web Page B.
Functional Matrix

It basically consists of 3 columns comprising of
Input, process and output. The input at each entity undergoes
certain processing which is displayed at the output. Also, it
helped using a the ring the complete know-how about the

www.ijsart.com

ISSN [ONLINE]: 2395-1052

1JSART - Volume 4 Issue 11 -NOVEMBER 2018

features and concepts pertaining to each entity and their
requirements.

<Tabulation done on basis of Input to Actors

involved> UsarProvidas s URL to the file
Table 1 Input to BOF Detector Fuzzas long with Attack nama

Tnput Process Output e e

URL provided by theSends HTTP ConnectionConnection is established) Shake to Establisn
Connaction with Wb sarver

User(Software Tester ~ onfRequest and requests for thedue to TCP Handshake

Hacker) HTML source page from theand BOF Delector is
peciid URLTCPuaing for HTML Couection Establiskad |
Handshake is performed feontent from the server
Fire Fuzzer R_ecei}‘a' tha
Stagel) Receives theParses the HTML source filgSubmits the modified SN Sowrn FUS G

HTML source file contentand embeds a larger and onHTML source file to the SQL Injection L BOF Amack:

tom the Web Server uponstring or a SQL InjectionURL specified in the

g the URL e o athte of =

ing the requestiquery imside the tion attribute of the

sing (he Linput” tag Fom page using the / \

TP Connection class POST method Embad SQL =

Stage) Receives the [Processes the HTTP Status Show cases the o oo Geperarad String
ponse(HTTP Status ~ [Code and begins logging it Analysis ~ aboul thef /

ode + Resulting content [In 3 data strueture for ~ HTTP Status code ina \

Ue to submassion of the ~ Further analysis purpose ~ kategorical mannerdnd Submits the fom to

eh Server when
data or

om) fom the HTTP

sfring was

Also each and eveny
Server response
Parameter 1s passed at the
(Command prompt

Table 2 Input to HTTP Web Server

|l|1pul

Process

Dutput

Slagel HTTP Comeeton
Reauestand HTML conten
reqest st by the HTTP
Clen Applcaion

Perfoms TCP Hand shake
rspaiches the HTML

HITP Clent Aplicaton

Comection i elablished
e o TCP Handsheke
outce page 10 here uestngpind Acknowedgemen i
rceivd or e et
HIML conent

1562 Submissionof the
Form contents using POST
pethod contining angled
Kata or SCL Injetion string

URL sentwith the POST
melhod and

pnds appropriae response

Processes the conints nthe Receives
Acknowledgement for e
st ResponseHITP
Blatuscodes resltng
bontent s 1o submission
00 ¢ form)

Page | 41

the dasignatad target
URL spcified in
form Tag

'
Fire Fuzzier Receives
HTTP Status Code from
HTTP Senver

:

Fire Fuzzier show
cases Analysis

=

Fig: 1 Flow diagram for Buffer overflows Attack Detection

IV. EXPERIMENT RESULT

Stepl: We wish to perform buffer overflow

www.ijsart.com

13SART - Volume 4 Issue 11 -NOVEMBER 2018

Step: 2 start the run configuration in Eclipse

ol = x
32| e vk v
pu Clanpath |, Sourre) B frrarvrent * ™
panes swains
8 oot bt
ety
[Res—
e
o
por rassemat - x
. N
an dose o ——
-
- e
- e
1

Step3: We choose to perform Buffer Overflow by using the
parameter ‘buffer’

Bl Ll Mewgets Segih Praed B Pelftieat Wedes e
B~ 00 G JHEr SO
21 [Prsba smende Decarson Saarch Consse

BN ONRIG WABIE AOLOISN NRRINGEN WR AN SUTIETATEL WLAIEECA RIS BITIBLE
- s e o - - s =3] - v
o - s e - - o e - . - -
sowmn s e w0 maoew scems we e s s pawesn oo S
- - — - - - o e - - re—
- T e - - - - -
an - T . - - - e - - -
- — T — B pretm omave—— Go—

Step 4: The detail view in Buffer Overflow by using “detail’
parameter

F

ié'

Vg
23

Step 5: Observe the Server responses shown in detail view

Page | 42

ISSN [ONLINE]: 2395-1052

% X
He gt Nugate Segrch Broedt Bn Peldhsest wndow melo
Br2c |0 Qr EF0 |ACE 1 v |0 Liviviaray
1 | srobiems vacoc Dacizration Searet corscie
') @ Corsore [<temnated> Frafuzzer [ava Apskeation]) I3 v ¥
gije A&k aglde-r
a: copsearch,d 114 a0B-Ro0S<avRs g JAEN T QI LWL s IBR) T2 L
10.redif{ canmorey/ jspiqucte process beae.)
reh, i) J Gt T QU LORL Leguchtify egTXcha OV 2506
chyled pitegL=zel AL 2] | TV 1 ErHSICRT X

OGO I 2[Lge a0y D531 L3 SGe A Vy] 2B FS L

Data passed: Login

P Pl

EEEE
OVERRLIN ANALVSIS- >
| # of Forns: 4
tal # of Loput tags: §

-Camgorizing the avalable data cn casis of HITP Stitus Codes-»>
nformational Codes 1rx Saries: 0
Buccesstul Clasat Interaction related 2 Series: 2
fedirection related 3ux Series: !

or related dux Series: 0
Error related Sar Series: 1

Step 6: Final Analysis in Buffer Overflow done using
detailed view

o] Croate, manage, and run configurations.
8=l EY e apphcation u
In] Outhw v X
e | L v
- {An saxine m not
&t | mouzEEm & v SRS, P loapain . B RNwunmant piewas
[& | mecssioes Brageam grgumeres:
| atp: aopx vql detad
@ naunslp
PRk .
Bime i
» 1T java Apphcakion
Variables,
. Al e fos ramsieml v x
-
& Bun Chows £l
TS B
e Pewhurzertus fealurer jon - Prehutrer

Step 7: Validation we wish to pass ‘buff’ which is a wrong
parameter to the Program (correct should be ‘buffer’)

552 eessssese ceTssvEeooe cevevSeTRs SESSSES.
wog) wos vom
som sue sen e oon

wgan woa dew oossosn mos ssw
sos e -
sss == oy
Sdoue = woo Tew

e GRS SHRRSRN SNARS e

www.ijsart.com

13SART - Volume 4 Issue 11 -NOVEMBER 2018

V. CONCLUSION

BOF Detector show cases the vulnerabilities in
typical Websites. As per our tests, we have proven that if
thus vulnerabilities come in the knowledge of Attackers then
Exploitation of vulnerabilities will not take much time it also
show cases then need for much improved and secure coding
standard. Even though as secure coding mode exist Security
Development Life Cycle, it is still being implemented in a
phased manner. That might be because corporation shave not
realized it s importance yet.

But, it is indeed time to use penetration testing tools
such as BOF Detector and the other likes which do exist to
become aware of the vulnerabilities be for putting the system
in to production environment.

REFERENCES

[1] V. Nithya, R. Regan, and J. Vijayaraghavan, "A survey
of SQL injection attacks, their Detection and Prevention
techniques,” International Journal of Engineering and
Computer Science(lJECS), vol. 2, no. 4, April 2013.

[2] Shahriar, H., Haddad, H.M., Vaidya, I..”Buffer overflow
patching for C and C++ programs: rule-based
approach”, SIGAPP Appl. Compute. Rev., 2013, 13

[3] Charier, H., Zulkernine, M.: ‘Mutation-based testing of
buffer overflow wvulnerabilities’. Proc. IEEE Int.
Computer Software and Applications Conf.2008, pp.
979-984

[4] Padmana bruin, B.M., Tan, H.B.K.: ”Auditing buffer
overflow vulnerabilities using hybrid static-dynamic
analysis”. Proc. IEEE Int. Computer Software and
Applications Conf., 2014, pp. 394-399.

[5] Wagner, D., Foster, J.S., Brewer, E.A.,et al.: “A first
step towards automated detection of buffer overrun
vulnerabilities”. Proc. Network and Distributed System
Security Symp., 2000, pp. 3-17

[6] Saxena, P.Poosankam, P., McCamant, S., et al.: “‘Loop-
extended symbolic execution on binary programs’. Proc.
Int. Symp. On Software testing an analysis, 2009, pp.
225-325

[7]1 V Nithya, SL Pandian, R Regan ,The SQL Injection
Attack Detection and Prevention by Classification and
Analysis Asian Journal of Information Technology 12
(4), 131-139,2013

[8] Cowan, C., Pu, C., Maier, D.et al.:‘StackGuard:
automatic adaptive detection and prevention of buffer-
overflow attacks’. Proc. USENIX Security Symp., vol.
7,1998

Page | 43

ISSN [ONLINE]: 2395-1052

[9] Brumley, D., Newsome, J., Somg, D..et al.: ‘“Towards
automatic generation of vulnerability-based signatures’.
Proc. IEEE Symp. Security and Privacy, 2006.

[10]zitser, M., Lippmann, R., Leek, T.:‘Testing static
analysis tools using exploitable buffer overflows from
open source code’. Proc. Int. Symp. on Foundations of
Software Engineering, 2004, pp. 97-106.

www.ijsart.com

