
IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 121 www.ijsart.com

A novel approach for Problem Solving using
Computational Thinking

Vartika Sharma
Department of CSE

Assistant Professor,GSSSIETW, Mysuru, Karnataka, India

Abstract-If information and communication technologies
(ICT) are to bring about a transformational change to a
sustainable society, then we need to transform our thinking.
Computer professionals already have a conceptual toolkit for
problem solving, sometimes known as computational thinking.
However, computational thinking tends to see the world in
terms of a series of problems (or problem types) that have
computational solutions (or solution types). Sustainability, on
the other hand, demands a more systemic approach, to avoid
technological solutions, and to acknowledge that technology,
human behavior and environmental impacts are tightly inter-
related. This paper concerns training about computational
thinking in discrete mathematics teaching. Firstly, four main
components of computational thinking are given, which are
abstract thinking, logical thinking, modeling thinking and
constructive thinking. Secondly, some content of discrete
mathematics, which have close relationship with
computational thinking, are described by corresponding
application example. Finally, we give a mapping from
knowledge unit of discrete mathematics onto corresponding of
details of computational thinking.

Keywords-Problem solving; computational thinking; discrete
mathematics teaching; knowledge unit; constructive thinking;
mapping

I. INTRODUCTION

Discrete mathematics is a branch of applied
mathematics that deals with arrangements of discrete objects
which are separated from each other, such as integers, real
numbers, propositions, sets, relations, functions and graph [1].
It has many applications in computer science and software
engineering, such as how to search useful information by
searching engineer (Google, Baidu), how to describe a static
structure and dynamic behavior of software system, and how
to verify a software specification by logic statements, etc. In
order to teach discrete mathematics successfully for teacher,
and specifically for student majoring in the department of
computer, we put forward an idea that introducing
“computational thinking” into discrete mathematics teaching.

Getting computers to help us to solve problems is a

two-step process: First, we think about the steps needed to
solve a problem. Then, we use our technical skills to get the

computer working on the problem. Take something as simple
as using a calculator to solve a word problem in maths. First,
you have to understand and interpret the problem before the
calculator can help out with the arithmetic bit. Similarly, if
you are going to make an animation, you need to start by
planning the story and how you’ll shoot it before you can use
computer hardware and software to help you get the work
done. In both of these examples, the thinking that is
undertaken before starting work on a computer is known as
computational thinking. Computational thinking describes the
processes and approaches we draw on when thinking about
problems or systems in such a way that a computer can help us
with these. Computational thinking is not thinking about
computers or like computers. Computers don’t think for
themselves. Computational thinking is about looking at a
problem in a way that a computer can help us to solve it.

The term “computational thinking” has been coined

to describe how to think like computer scientist [2], it was
advocated by M.Wing, a Carnegie Mellon University
professor. Computational thinking has become a fundamental
skill, ranking alongside reading, writing and arithmetic, it can
be found on all the subjects [3]. “Computational Thinking
involves solving problems, designing systems, and
understanding human behavior, by drawing on the concepts
fundamental to computer science.” In the case of systems
biology, it means the ability to pull together the multiple
abstractions that molecular biology has accumulated. In
computer science, it can help people understand and construct
computer system to solve given problem[10].

In this paper, we introduce “computational thinking”

into discrete mathematics teaching. Section 1 introduces the
application of discrete mathematics and computational
thinking briefly. Section 2 illustrates contents of
computational thinking in detail, and gives some definition by
discrete mathematics. In section 3, we give contents of
discrete mathematical designed by ACM/IEEE Computing
Curricula 2005. In the final section, some mapping from DM
(Discrete Mathematics) to CT (Computational Thinking) is
given.

II. CONCEPTS OF COMPUTATIONAL THINKING

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 122 www.ijsart.com

A. Logical Thinking

Logical thinking is the process in which one uses
reasoning consistency to come to a conclusion. Some
computer problems or computer states (situation) that
involving logical thinking always call for mathematics
structure, for relationships between some hypotheses and
given statements, and for sequence of reasoning that make
some conclusion more reasonable.

The core and basis of all logical thinking is sequential

thought which arrange a serial of statements by a chain, the
frontal element represents earlier conclusion, sequential
thought process involves taking some statements in a chain-
like progression that takes on a meaning in and of it. To think
logically is to construct some approaches step by step.

It has been proved that logical training of discrete

mathematics can make computer student smarter and more
meticulous. A student who has logical thinking capability
always rejects quick answer some computer problem, such as
“it is too difficult”, or “I don’t know”. On contrary, he will
apply logical thinking to delve into proposed problem and
understand better the method and arrive at a solution. Logical
thinking is not a magical process or a matter of genetic
endowment, but a learned mental process which is taught in
discrete mathematics.

B. Abstract Thinking

In order to understand main body of computer
problem, abstract thinking is essential in computer science and
technology. In solving an interesting problem, abstraction
thinking is one very general purpose heuristic that can help to
attack this problem. Informally, abstraction thinking can be
thought of the mapping from a ground representation to a new
but simpler representation [4]. Abstract representation is
simpler because the mapping usually throws away details but
preserves certain desirable properties, and translates the old
problem into a new problem which can be solved by our
knowledge.

Definition 1 (Formal system): A formal system ∑ is a

triple <L, Ω, ∆ >, where L is the specified domain language, Ω
is the set of axioms about rule used and ∆ is the deductive
machinery of ∑.

Usually, a language is defined by the alphabet, the set

of well formed terms which can construct domain language,
and the set of well formed formulae. The axioms are the basic
well formed formulae, that is to say, Ω � L. deductive

machinery is the set of inference rules which can induce new
theorems from existing ones.

Definition 2 (Abstract): An abstract is a triple, A = <

∑1, ∑2,f>, where ∑1 and ∑2 are formal system ,and f is a
function which maps from the language of ∑1 onto that of ∑2.

Definition 3 (Abstract thinking): Abstract thinking is

a thinking method which solves a new problem by abstract, it
always translate source problem l1�∑1 into a target problem
l2 = f(l1)�∑2, then use some axioms and deductive
machinery of ∑2 to solve l2.

C. Modeling Thinking

Modeling thinking, in the technical use of the term,
refers to the translation of objects or phenomena from the real
world into mathematical equations, and/or computer relations.
It is choosing an appropriate representation or modeling the
relevant aspects of a problem to make it tractable. Computer
modeling is the representation of reality objects on a
computer. A problem which will be solved by computer must
be modeled by corresponding software model.

Computer modeling is a mathematical and computer

method for solving real world problems. By virtue of
modeling thinking, students can study a problem-solving
process. Also, they can learn how to identify a problem,
construct or select appropriate models, figure out what data
needs to be collected, test the validity of a model, calculate
solutions and implement the model. In order to promote
student creativity and demonstrate the link between computer
theoretical and real world applications, we must place great
emphasis on model construction. Computer models can
provide explanation facilities that support multiple
perspectives, ranging from the conceptual level, to logical
level and finally to physical level, all these levels can slake
anyone's thirst for knowledge.

D. Constructive Thinking

Target of theory is to practice in reality. How to solve
some problems (such as performing arithmetic, organizing
data, graphically displaying information, playing chess with
other player) is an important skill. Constructive thinking can
help us solve these problems by algorithm and program, many
interesting and useful programs require greater effort, and do
some algorithm exercises in discrete mathematics[11].

Computers work with algorithms. An algorithm is a

step- by-step unambiguous mechanical procedure requiring no
insight or ingenuity to perform. It just likes cookbook recipes,

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 123 www.ijsart.com

devising a good recipe can be a difficult and creative task, but
following a recipe should be straightforward and routine.
Performing these operations has innovative thinking.

Definition 4 (Constructive thinking): Constructive

thinking is any well-defined computational procedure
that takes some value, or set of values, as input and produces
some value, or set of values, as output. Informally:

Constructive thinking: = <Q, I, Ω, F >, where Q is a

set of computing states, both I and Ω are subset of Q. Among
which, I stands for input set of computing, and Ω stands for
output set of computing. F is computing rule, namely F is a
mapping function. By using F function, we can define an order
which is arranged as following: x0, x1, x2,… xk, where xk =
F(xk-1). Order “x0, x1, x2,… xk” represents the constructed
computing steps beginning with step x0, ending with xk.

As a carrier of constructive thinking, an algorithm or

program is thus a sequence of computational steps that
transform the input into the output. We can also view an
algorithm as a tool for solving a well-specified computational
problem. The algorithm describes a specific computational
procedure for achieving that input/output relationship.

III. CONTENT OF DISCRETE MATHEMATICS

Discrete mathematics has applications to all fields

of computer science, it is used extensively in
telecommunications and information processing. In DM, we
are concerned with objects such as integers, propositions, sets,
relations and functions which are all discrete. We learn
concepts associated with them, properties and relationships
among them. DM includes sets, functions and relations, matrix
algebra, combinatory and finite probability, graph theory,
finite differences and recurrence relations, logic, mathematical
induction, and algorithmic thinking [7, 8]. Because of this
diversity of topics, it is perhaps preferable to study all these
content of discrete mathematics, but, discrete mathematics has
a minimal set which is a necessary condition to grasp
computational thinking.

In the late 1990s a Joint ACM/IEEE Task Force was

formed to revise the undergraduate computing curricula. They
report six topics as the knowledge base for discrete
structures—(DS1) functions, relations and sets, (DS2) basic
logic, (DS3) proof techniques, (DS4) basics of counting,
(DS5) graphs and trees, and (DS6) discrete probability. They
came to the conclusion that the DM material should be taught
with examples and applications from computer science [1],
because the applications would enhance the understanding of
DM.

Mathematical Logic

Logic is a language for reasoning for some assertion.
It is a collection of rules which can be used when doing
logical reasoning. Human reasoning has been observed over
centuries from at least the times of Greeks, and patterns
appearing in reasoning have been extracted and abstracted.
The foundation of the logic was laid down by a British
mathematician Boole in the middle of the 19th century.
Mathematical logic is interested in true or false of statements,
and how the truth/falsehood of a statement can be determined
from other statements. We use symbols to represent arbitrary
statements so that the results can be used in many similar but
different situations, so logic can promote the clarity of thought
and eliminate ambiguity and mistakes.

There are various types of logic such as logic of

sentences (propositional logic), logic of objects (predicate
logic), uncertainties logic, fuzziness logic, modal logic, and
temporal logic etc. But in DM course, we are only concern
with propositional logic and predicate logic which are
fundamental to other logic.

Example 1 (logical as boolean searching): In

propositional logic, there are many connectives (¬, �, �)
which are used extensively in searching of information of
webpage on internet. Considering Google search engines, it
supports boolean searching technique, which usually can help
find web pages about particular subject. In Google, “+” or
bank stands for logical connectives “�”, “-” stands for logical
connectives ¬, “OR” stands for logical connectives�. If we
input sentence “computational thinking ” in Google, then all
the webpages about computational thinking are searched; If
we input sentence “computational - thinking ” in Google, then
all the webpages which conclude “computational” but no
“thinking” are searched, so searching result becomes little.

Set Theory

The concept of set is fundamental to computer
science. For example, relationships between two objects are
represented as a set of ordered pairs of objects, the concept of
ordered pair is defined using sets; natural numbers, which are
the basis of other numbers, are also defined using sets; the
concept of function, being a special type of relation, is based
on sets, and graphs and digraphs consisting of lines and points
are described as an ordered pair of sets.

The relation is a special set which consist of two-

tuples, it is an abstraction of relations we see in our everyday
life such as those between parent and child, address and
telephone number, main calling function and sub called

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 124 www.ijsart.com

function, etc. In set theory, we focus our attention on
properties of those relations, such as reflexivity, irreflexivity,
symmetry, anti symmetry and transitivity.

A function is something that associates each element

of a set with an element of another set. It appears quite often
even in no technical contexts. For example, a social security
number uniquely identifies the person; the income tax rate
varies depending on the income, and so on. As you might have
noticed, a function is quite like a relation, but one element in
function doesn’t map onto many elements.

Example 2 (relation closure application in mobile

telephone): Mobile telephone network has data centers in
Beijing, Shanghai, Taiyuan, Yantai and Nanjing. There are
direct, one-way optical cables from Beijing to Shanghai, from
Beijing to Taiyuan, from Shanghai to Yantai, and from
Taiyuan to Naning. We can model this situation by relation.
Let R be the relation, <a, b>�R if there is an optical cables
from the data center a to that in b, How can we guarantee there
is some link composed of one or more optical cables from one
city to another? Although R cannot be used directly to answer
this, however, we can find all pairs of data center that have a
link by constructing transitive closure of R.

Abstract Algebra

Abstract algebra is a typical application of abstract
thinking. Mathematicians work with and delight in bizarre
numbers such as i (the square root of -1) which seem likes an
irrational mix of mysticism. Nonetheless, the basic
operations in arithmetic (addition, subtraction, multiplication,
division etc.) apply remarkably well to many disparate real-
life situations, such as balancing your checkbook, keeping
score in a game of cards, or measuring ingredients for a recipe.
In all these situations, we use add and multiply operator to
model the situation perfectly.

In abstract algebra, we will quickly move to a more

general point of view. We will often move back and forth
between the general abstract concepts and specific concrete

examples; this move between abstract structures and concrete

instances of these structures is at the heart of the abstract
algebra. Abstraction means that we often feel that we are
proceeding without intuition, guided by bare logic, so proof
becomes crucial. Rather, after studying a few examples
carefully we will move to the general case. There are two

reasons for this: first, doing otherwise would take too much
time; second, the abstract point of view is considerably easier
than the concrete.

Example 3 (software is a abstract algebra): Software

is a algebra structure SW = <Language, Strcat, Strcomp,
Strcpy,…>, where Language is a set of strings which can been
processed by software, Strcat, Strcomp, and Strcpy are string
operators. For example, Strcmp can compare two strings
whether they are equal. In nature, any software is a machine
which can process and translate string; in addition, it is an
algebra structure whose operation object is string.

Graph Theory

A graph G consists of two disjoint sets V (vertices)
and E (edges), and an incidence relation which associates a
pair of vertices with each edge. It has many applications in
various disciplines such as Biology (e.g. phylogenic trees),
Computer Science (e.g. checking program deadlock, modeling
of the Internet), Economic (e.g. social networks), Engineering
(e.g. computer networks), and other branches of sports
(modeling of tournaments).

Using graph theory, we will explore along the way

some of its numerous applications, especially in computer
science. These include critical path analysis, graph coloring
problems, minimal spanning trees, and bin-packing
techniques. There are two important teaching goal of graph
theory: teaching students to write complete and concise
proofs, and understanding application of graph theory in
computer and software engineering.

Example 4 (CP-net application) Extracting preference

information from users is generally an arduous process, and
human decision analysts have developed sophisticated
techniques to help elicit this information, CP-net is an
important and useful graph model to represent preference [9].

Definition 5 A CP-net over variables V = {X1, X2,

…, Xn } is a directed graph G over X1, X2, …,Xn whose
nodes are annotated with conditional preference tables
CPT(Xi) for each Xi �V. Each conditional preference table
CPT(Xi) associates a total order > with each instantiation u of
Xi's parents Pa(Xi) = U.

Jb Pb Sr >Sw
Jw Pb Sw>Sr
Jb Pw Sw >Sr
Jw Pw Sr >Sw

Figure 1. CP-Net for “my evening dress": Jacket, Pants and
Shirt

Jb >Jw Pb >Pw

J P

S

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 125 www.ijsart.com

Fig. 1 illustrates a CP-net that expresses my
preferences for evening dress. It consists of three variables J,
P, and S, standing for the jacket, pants, and shirt, respectively.
I unconditionally prefer black to white as a color for both the
jacket and the pants, while my preference between the red and
white shirts is conditioned on the combination of jacket and
pants: if they have the same color, then I prefer a red shirt.
Otherwise, if the jacket and the pants are of different colors,
then I prefer a white shirt.

IV. MAPPING FROM DISCRETE MATHEMATICS TO

COMPUTAIONAL THINKING

As stated above, computational thinking has some
kinds of thinking and discrete mathematics studies discrete
object and their relations. In order to understand the content of
discrete mathematics, and grasp the idea of computational
thinking in discrete mathematics, we give the relationship
between computational things and discrete mathematics.

Abstract by algebra structure and graph

Many of knowledge units of discrete mathematics
can map onto abstract thinking. Formal proposition of
mathematical logic is an abstract which can describe some
statement about reality world or computer sciences. Such as
“TCP protocol is a protocol of internet”, it tells us that in
internet technology, TCP is an important protocol; In addition,
set, relation, function, can been seen as an abstraction of some
discrete objects which are studied by computer scientist; In
Unified Modeling Language of software engineering, they are
many diagrams (such as class diagram, object diagram, state
diagram…) which are abstracted of software components.

Logical thinking by computer logic

Logical thinking runs through all the teaching of
discrete mathematics, among which, mathematical logical lay
a foundation of reason. In set theory, algebra structure and
graph theory, a lot of proof of theorem can been seen as
logical thinking. In the logical unit, we outline the basic
structure of and give examples of each proof technique. By
logical thinking, we can discuss which type of proof is best
for a given problem. In addition, we can relate the ideas of
mathematical induction to recursion and recursively defined
structures.

Modeling thinking by set theory and relation

Discrete mathematics has applications to almost
every conceivable area of computer science. Modeling with
discrete mathematics is an extremely important problem-

solving skill, which give ability to develop some programs to
solve problems of computer by constructive thinking.
Modeling tools are: proposition, set, permutation, relation,
graph, tree, finite state machine, operator, and algebra
structure (such as group, ring, boolean algebra).

Constructive thinking by algorithm and proving

In discrete mathematics course, there are many
knowledge units about theorem proof and algorithm
construction. Grasping of proof nature, direct and indirect
proofs, proof by contradiction, counterexamples, existence and
constructive proofs can tell us that construction thinking is an
important computational approach. Moreover, math induction
(weak, strong, structural), well-ordering principle, standard
searching and sorting algorithms, algorithm correctness
arguments, recursive definitions, iterative and recursive
algorithms are some concrete constructive approaches .

V.CONCLUSION

Future mathematics teaching has not only to focus on

concepts and teaching techniques of computing, but also on
problem solving and problem posing to reach general aims
like creativity, ability of systematization, abilities of
communication, argumentation, presenting mathematics
results, and ability of working in a team as well as getting a
vivid view and a positive belief about mathematics and its
application in real world.

REFERENCES

[1] ACM/IEEE Task Force Report on Computing Curricula

2001-Computer Science, Volume,2001.
http://www.acm.org/education /curricula.html

[2] J. M. Wing. Computational thinking. CACM 49(3):33-35,
2006.

[3] M. Guzdial. Paving the way for computational thinking.
CACM 51(8): 25-27, 2008.

[4] J. S. Warford. “An experience teaching formal methods in
discrete mathematics,” SIGCSE Bulletin, 1995, pp. 60-
64.

[5] M. Shaw. Software Engineering for the 21st Century: A
Basis for Rethinking the Curriculum. CMU-ISRI-05-108.
School of Computer Science, Carnegie Mellon
University, Pittsburgh PA. 2005.

[6] P. Dourish, Hayes. Informatics at UC Irvine. Abstracts
on Human Factors in Computing Systems. CHI '08.
ACM, 2008, 3651-3656.

[7] N. Crisler, P. Fisher. Discrete mathematics through
Applications. W. H. Freeman and Company, 1994.

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 126 www.ijsart.com

[8] B. Marion. Final Oral Report on the SIGCSE Committee
on the Implementation of a Discrete Mathematics Course.
In SIGCSE Technical Symposium on Computer Science
Education, 2006, pp 268-9,

[9] C. Boutilier, R. Brafman. CP-nets: A tool for representing
and reasoning about conditional ceteris paribus preference
statements. Journal of Artificial Intelligence Research
(JAIR), 2004, 21, 135–191.

[10] Wing, J. M. , “Computational thinking”, Communications
of the ACM, Vol.49, 33-35, 2006.

[11] King, P. M. & Baxter-Magolda, M. B., “A developmental
perspective on learning”, Journal of college student
development, 37(2), 163-173, 1996.

