Replacement of Coarse Aggregate By Rubber Fragments in Concrete

Anand Daftardar¹, Jigisha Vashi², Nihar Vora³, Adish Gupta⁴, Karan Rathi⁵, Siddharth Singh⁶

Dept of Civil Engineering

SVKM'S NMIMS MPSTME, Mumbai.

Abstract- A large variety of waste materials is considered feasible and even much valuable additives for concrete. Some of these materials include cellulose, fly ash, silica fumes and wood particles. Rubber obtained from scrapped tyres is considered as the most recent waste materials that have been examined because of its vital use in the construction field. By replacing course aggregates with rubber aggregate in the form of cubical or angular aggregates which increase the shrinkage properties of the concrete. It was also seen from the past studies that it also increases the freeze - throw characteristics of the concrete. It does not only increase the freezing and throwing characteristic but also the expansion and contraction of the concrete were cut in half. And hence the overall advantages is that cracking is reduced. Obviously, these are all excellent advantages when they are used in the optimum proportion otherwise if the rubber content is more then there will be a strength reduction of the concrete. In this paper, cubical and angular rubber fragments were mixed with the concrete and its cube was made. The compressive strength of the concrete cubes was tested with the help of Universal Testing Machine (UTM).

Keywords- Rubber, Coarse Aggregate, Concrete, Scrapped tyres, Waste material

I. INTRODUCTION

A large variety of waste materials are considered feasible and even much valuable additives for concrete. Some of these materials include cellulose, fly ash, silica fumes and wood particles. Rubber obtained from scrapped tyres is considered as the most recent waste materials that have been examined because of its vital use in the construction field. By replacing course aggregates with rubber aggregate in the form of cubical or angular aggregates which increase the shrinkage properties of the concrete. It was also seen from the past studies that it also increases the freeze - throw characteristics of the concrete. It does not only increase the freezing and throwing characteristic but also the expansion and contraction of the concrete were cut in half. And hence the overall advantages is that cracking is reduced. Obviously, these are all excellent advantages when they are used in the optimum proportion otherwise if the rubber content is more then there will be a strength reduction of the concrete. In this paper, cubical and angular rubber fragments were mixed with the concrete and its cube was made. The compressive strength of the concrete cubes was tested with the help of Universal Testing Machine (UTM).

Bekir et al., (1997) analyzed rubberized concrete according to composite material rules and it was observed that experimental results complied conclusively with equations used for composite material rules. Abdollahzadeh et al., (2011) were modeled rubberized concrete using the artificial neural network and obtained results were compared to experimental data. Results demonstrate the high ability of ANN in the prediction of the compressive strength of rubberized concrete compared to MLR ($R^2 = 0.9650$ and RMSE=0.017). The possibility of using rubber waste from scrap tires as replacement of coarse aggregate in concrete was investigated by Shah et al., (2014). Performance of concrete mixtures incorporating 5, 10 and 15% of scrap rubber as volume replacement for coarse aggregate was investigated and observed that no remarkable changes in concrete properties up to 5% substitution occurred. Beyond 5% substitution, concrete properties change appreciably. Compressive strength, flexure strength, workability, stiffness and unit weight of rubberized concrete decreased as rubber content increased. Even Chen and Liu (2014) use the tire-rubber particles has replaced by coarse aggregate at content levels of 25, 50, 75, and 100% in concrete by volume and observed the same results to that of Shah et al., (2014). The experimental program was carried out by Dai et al., (2013) to investigate strength performance and flexural properties of concrete containing recycled crumb rubber. The rubber contents of 10, 20, 30 and 40% by volume were selected and it is notable that strength properties of crumb rubber concrete and the failure mode tends to become ductile failure due to the rubber inclusion rather than a brittle failure of normal concrete. Tire-derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete by Siringi et al., (2015). The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined and results indicate that while replacement of coarse aggregates with TDA results in a reduction in strength, it may be mitigated with the addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile

product while utilizing recycled TDA. More et al., (2015) study the use of waste tyre rubber as partial replacement of fine aggregate to produce rubberize concrete in the M25 grade of the mix. Different partial replacements of crumb rubber (0, 3, 6, 9 and 12%) by volume of fine aggregates are cast and tested for flexural strength and split tensile strength and the results show that there is a reduction in all type of strength for crumb rubber mixture, but crumb rubber content concrete becomes leaner due to increasing in partial replacement of crumb rubber fine aggregates from 0% to 12%, therefore, such type of concrete of is useful in making light weight concrete.

II. CASTING AND USEFULNESS OF THE PRODUCT

This paper aims at utilizing rubber waste tyres as a constituent in concrete mixes and its products as a partial replacement of natural and artificial fine aggregate components. Scrap rubber tyres of a cubical shape having a size of 20 mm were taken for the study. The rubber tyre was manually cut with the help of hammer and chisel as shown in the (Fig.1). The coarse aggregate was replaced by the cubical rubber aggregate as shown in the (Fig.2). Similarly, the angular rubber was cut in the size of aggregates less than 12mm as shown in the (Fig.3). The M20 grade of concrete was selected. The specific gravity of rubber is 1.15 and average compacted density is 710 kg/m³. (Fig.4) shows the mixing of concrete and (Fig.5) shows the tamping the concrete while casting the cubes. The sample was tested after 7 days and 28 days. Table 1 shows the results of a compressive test of M20 rubberized concrete having cubical rubber aggregate. Table 2 shows the results of a compressive test of M20 rubberized concrete having angular rubber aggregate. Table 3 shows the results of a compressive test of M20 standardized concrete.

Fig. 1 Rubber tyre manually cut

Fig. 2 Cubical Rubber Sample

Fig. 3 Angular rubber aggregates of less than 12 mm

Fig. 4 Mixing of Concrete

Fig. 5 Tamping the concrete while casting the cubes

If tyres are reused as a construction material instead of being burnt, the unique properties of tyres can once again be exploited in a beneficial manner. In this context, the use of tyre chips in lightweight concrete is considered a potentially significant avenue. Thus, the use of scrap tyres in concrete manufacturing is a necessity than a desire. The use of scrap tyres in concrete is a concept applied extensively over the world. The use of scrap tyres rubber in normal strength concrete is a new dimension in concrete mix design and if applied on a large scale would revolutionize the construction industry, by economizing the construction cost and increasing the worn out tyre disposal. It is with this intension, an experimental study is proposed to be conducted by using crumb rubber as sand in cement concrete.

Table 1. Test Reports of M20 Rubberized Concrete having Cubical Rubber Aggregate

Material	Mixed design in	Moisture	Absorpt	on Correction	Corrected	Trial batch	
kg/cum	SSD condition				mix	kg	
Cement	250	-	-	-	250	9.15	
Flyash	100	-	-	-	100	3.66	
Rubber	36	-	-	-	36	1.32	
20mm	559	0%	0.90 %	5.0	554	20.27	
(Metal 2)							
10mm	412	0%	1.10 %	4.532	407	14.91	
(Metal 1)							
Crushed Sand	931	0%	2.90 %	26.999	904	33.07	
Water	168			205	7.48		
Admixture	4.025			4.025	0.147		
Density	2460			2460	89.85		
Mix apj	pearance		Mix is homogeneous and workable				
		In	itial	170 mm			
Work	ability	60	min		150 mm		
		120	min		140 mm		
		180	min		70 mm		
		Cube Com	pressive St	rength Results			
Age	Wei	ght (kg)		Strength (N/mm ²) Averag	e (N/mm ²)	
		8390		12.10			
7 Days	1	8490		11.50	1	2.56	
		8450		14.08			
		8430		22.95			
28 days		8410		21.16		2.25	
		8540		22.65	7		

Table 2. Test Reports of M20 Rubberized Concrete havingAngular Rubber Aggregate (less than 12mm)

Material	Mixed design in	Moisture	Absorpti	on Correction	Corrected	Trial batch	
kg/cum	SSD condition				mix	kg	
Cement	250	-	-	-	250	8.13	
Flyash	100	-	-	-	100	3.25	
Rubber	36	-	-	-	36	1.17	
20mm	559	0%	0.90 %	5.0	554	18.02	
(Metal 2)							
10mm	412	0%	1.10 %	4.532	407	13.25	
(Metal 1)							
Crushed Sand	931	0%	2.90 %	26.999	904	29.40	
Water	168	-	-	-	205	6.65	
Admixture	4.025	-	-	-	4.025	0.131	
Density	2460	-	-	-	2460	79.87	
Mix ap	Mix appearance Mix is homogeneous and workable				•		
		Ini	tial		180mm		
Wor	kability	60 min		160mm			
	-	120	min	120mm			
		180	min	\$0mm			
		Cube Comp	ressive Stre	ngth Results			
Age	Weig	ht (kg)		Strength (N/mm ²) Avera	Average (N/mm ²)	
-	8:	500		14.74			
7 Days	8.	390		13.06		14.75	
-	84	178		16.45			
	84	440		26.46 26.46 26.55			
28 days	8:	530				26.55	
	\$410			26.72		1	

Table 3. Test Reports of M20 Standardized Concrete	ete
--	-----

Material	Mixed design in	Moisture	Absorpt	ion	Correction	Corrected	Trial	
kg/cum	SSD condition		-			mix	batch kg	
Cement	250	-	-		-	250	9.15	
Flyash	100	-	-		-	100	3.66	
Rubber	0	-			-	0	0	
20mm	595	0%	1.0 %		6.0	589	21.55	
(Metal 2)								
10mm	412	0%	1.10 %	6	4.532	407	14.91	
(Metal 1)								
Crushed Sand	931	0 % 3.10 % 28.861		28.861	902	33.00		
Water	168			-	207	7.59		
Admixture	4.2			-	4.2	0.154		
Density	2460			2460	89.85			
Mix app	pearance		Mix is homogeneous and workable					
		Init	ial	Collapse				
Work	cability	60 n	ain			180mm		
		1201	mm			170mm		
		180 1	mm			130mm		
		Cube Comp	ressive Str	ength	Results			
Age	Weig	ght (kg)		Strer	igth (N/mm ²)	Average	(N/mm ²)	
	8	510		14.22				
7 Days	8	540		15.11		14	.18	
	8	5600			13.22			
	8	620			25.22			
28 days	8	570		24.21 24.		.80		
8609		609	24.97		7			

III. COMPARATIVE ANALYSIS

After carrying out the experiments using rubber aggregates, a comparison between the three samples was made. These three samples consisted of standard M20 cubes, cubical rubberized M20 concrete cubes, and angular rubberized M20 concrete cubes. The compressive strength of the three different samples is shown below in Table 4.

Table 4.	Comparison	of the c	compressive	strength
			1	<u> </u>

Age (Days)	Standard (MPa)	Cubical (MPa)	Angular (MPa)
7	14.18	12.56	14.75
28	24.8	22.25	26.5

IV. COST ANALYSIS

The cost analysis for rubberized concrete v/s standard M20 concrete was carried out for the 1-meter cube to check its economic feasibility. Table 5 Shows the detailed cost analysis of standard M20 concrete cube and rubberize concrete cube. It is observed that only about 3 % of the cost is increased in case of utilization of rubberized concrete.

Table 5. Cost	comparison	of rubberized	concrete	with	standard
	M20) concrete cub	e		

Concre	te Rate Per	Cum I	4-20 Pa	art A		
(Ma	arch 2016)	– With	Rubbe	r		
Ingredients	Unit/Cum	Rate	Rate	Amount		
_		(INR)	/Kg	(INR)		
Cement	250	5700	5.7	1425		
Flyash	100	2205	2.21	221		
Rubber	36	200	3	108		
M/Sand	931	4200	0.89	832		
CA-1	412	2940	0.73	301		
CA-2	595	2940	0.72	429		
Water	168	900	0.09	15		
Admixture	3.5	53000	53	186		
Tot	Total 3510 Rs/-					
	Concrete Rate Per Cum M-20 Part A					
Concre	te Rate Per	Cum I	M-20 Pa	art A		
Concre (Mar	te Rate Per ch 2016) –	· Cum M Withou	M-20 Pa It Rubl	art A ber		
Concre (Mar Ingredients	te Rate Per ch 2016) – Unit/Cum	Cum N Withou Rate	M-20 Pa it Rubb Rate	art A ber Amount		
Concre (Mar Ingredients	te Rate Per ch 2016) – Unit/Cum	Cum M Withou Rate (INR)	M-20 Pa It Rubb Rate /Kg	art A Der Amount (INR)		
Concre (Mar Ingredients Cement	te Rate Per ch 2016) – Unit/Cum 250	Cum M Withou Rate (INR) 5700	M-20 Pa It Rubb Rate /Kg 5.7	art A Der Amount (INR) 1425		
Concre (Mar Ingredients Cement Flyash	te Rate Per ch 2016) – Unit/Cum 250 100	Cum N Withou Rate (INR) 5700 2205	M-20 P: it Rubl Rate /Kg 5.7 2.21	art A ber Amount (INR) 1425 221		
Concre (Mar Ingredients Cement Flyash Alccofin	te Rate Per ch 2016) - Unit/Cum 250 100 0	Cum N Withou Rate (INR) 5700 2205 0	M-20 Pa it Rubb Rate /Kg 5.7 2.21 0	art A ber Amount (INR) 1425 221 0		
Concre (Mar Ingredients Cement Flyash Alccofin M/Sand	te Rate Per ch 2016) Unit/Cum 250 100 0 931	Cum N Withou Rate (INR) 5700 2205 0 4200	M-20 P: It Rubb Rate /Kg 5.7 2.21 0 0.89	art A ber Amount (INR) 1425 221 0 832		
Concre (Mar Ingredients Cement Flyash Alccofin M/Sand CA-1	te Rate Per ch 2016) – Unit/Cum 250 100 0 931 412	Cum N Withou Rate (INR) 5700 2205 0 4200 2940	M-20 P: It Rubb Rate /Kg 5.7 2.21 0 0.89 0.73	art A ber Amount (INR) 1425 221 0 832 301		
Concre (Mar Ingredients Cement Flyash Alccofin M/Sand CA-1 CA-2	te Rate Per ch 2016) – Unit/Cum 250 100 0 931 412 595	Cum N Rate (INR) 5700 2205 0 4200 2940 2940	M-20 P: Rate /Kg 5.7 2.21 0 0.89 0.73 0.72	art A ber Amount (INR) 1425 221 0 832 301 429		
Concre (Mar Ingredients Cement Flyash Alccofin M/Sand CA-1 CA-2 Water	te Rate Per ch 2016) – Unit/Cum 250 100 0 931 412 595 168	Cum N Withou Rate (INR) 5700 2205 0 4200 2940 2940 900	M-20 P: tt Rubb Rate /Kg 5.7 2.21 0 0.89 0.73 0.72 0.09	art A ber Amount (INR) 1425 221 0 832 301 429 15		
Concre (Mar Ingredients Cement Flyash Alccofin M/Sand CA-1 CA-2 Water Admixture	te Rate Per ch 2016) – Unit/Cum 250 100 0 931 412 595 168 3.5	Cum N Withou Rate (INR) 5700 2205 0 4200 2940 2940 900 53000	M-20 Pr at Rubb Rate /Kg 5.7 2.21 0 0.89 0.73 0.72 0.09 53	art A ber Amount (INR) 1425 221 0 832 301 429 15 186		

V. CONCLUSION

As seen in the test reports the compressive strength of rubberized M20 concrete having angular aggregates was found out to be higher than the compressive strength of standard M20 concrete and rubberized M20 concrete having cubical aggregates. Thus we conclude that rubberized concrete can be used for the following purposes:

- 1. PCC (Plain Cement Concrete)
- 2. Partition Walls: Light in weight than regular concrete, therefore, reducing dead load of the structure.
- 3. Road Pavements: Due to high permeability the water can percolate inside the soil and help in recharging the water table.
- 4. Reducing the cost of footing.

The future scope of the study is discussed as follows:

- 1. The scrap rubber can be cut in different sizes and used in various samples.
- 2. The aggregates can be replaced by different percentages
- 3. Different constituents can be used in concrete such as the grade of cement, admixtures & fly ash.

4. Numerous cubes having different constituents and percent -age replacements of aggregates can be cast and their results can be compared.

REFERENCES

- Bekir Iker Topçu., and Nuri Avcular., Analysis of Rubberized Concrete as a Composite Material, Cement and Concrete Research, Volume 27, Issue 8, 1997, pp. 1135-1139.
- [2] Abdollahzadeh, A., Masoudnia, R & Aghababaei, S., Predict strength of rubberized concrete using the artificial neural network, Journal WSEAS Transactions on Computers, Volume 10, Issue 2, 2011, pp. 31-40.
- [3] Shah, S. F., Naseer, A., Shah. A & Ashraf, M., Evaluation of Thermal and Structural Behavior of Concrete Containing Rubber Aggregate, Arabian Journal for Science and Engineering, Volume 39, Issue 10, 2014, pp. 6919–6926.
- [4] Chen Bing; and Liu Ning., Experimental Research on Properties of Fresh and Hardened Rubberized Concrete, Journal of Materials in Civil Engineering, Volume 26, Issue 8, 2014, pp.04014040-1 to 8.
- [5] Dai, Jie., Jian Min Xiong & Jin Zhi Zhou., Experimental Study and Analysis on Strength Properties of Waste Crumb Rubber Concrete, Advanced Materials Research, Volume 815, 2013, pp. 227-232.
- [6] Siringi, Gideon., Ali Abolmaali & Pranesh B. Aswath, Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates, The Scientific World Journal, Article ID 863706, 2015, pp. 13, http://dx.doi.org/10.1155/2015/863706.
- [7] More, Tushar R., Pradip D Jadhao & S M Dumne., Strength Appraisal of Concrete Containing Waste Tyre Crumb Rubber, Int. J. Struct. & Civil Engg., Vol. 4, No. 1, 2015, pp. 88-99.