
IJSART - Volume 1 Issue 7 –JULY 2015 ISSN [ONLINE]: 2395-1052

Page | 9 www.ijsart.com

Genetic Algorithm Approach to Schedule Tasks

Ashish Mittal1, Kapil Chawla2

1, 2 SITM, Sonipat

Abstract- Task scheduling is the allocation of resources over
time to perform a collection of tasks. Task Scheduling in
Multiprocessor is a term that can be stated as finding a
schedule for a general task graph to be executed on a
multiprocessor system so that the schedule length can be
minimized. Multiprocessor scheduling problems may be
divided in two categories: Static and dynamic task scheduling.
A static or deterministic task scheduling is one in which
precedence constraints and the relationships among the task
are known well in advance While non-deterministic or
dynamic scheduling is one in which these information is not
known in advance or not known till run time. Efficient
scheduling of application tasks is critical to achieving high
performance in parallel multiprocessor systems. The choice of
scheduling technique and its parameterization impacts the
performance of systems. This paper describes an algorithm for
scheduling tasks to multiple processors. The algorithm is
“Genetic Algorithm”. Genetic algorithm (GA) is a meta-
heuristic technique and also a search technique used to find
approximate solutions to optimization and search problems

Keywords- Task Scheduling, Optimization, Multiprocessor, Genetic
Algorithm etc.

I. INTRODUCTION

Task Scheduling in Multiprocessor is a term that can
be stated as finding a schedule for a general task graph to be
executed on a multiprocessor system so that the schedule
length can be minimized. Multiprocessor scheduling problems
can be classified into many different categories based on
characteristics of the program and tasks to be scheduled, the
multiprocessor system, and the availability of information. A
major factor in the efficient utilization of multiprocessor
system is the proper assignment and scheduling of
computational tasks among processors.

The problem can have many variations:
(a) The scheduling algorithm can be deterministic – also

known as static – or nondeterministic: A deterministic
task scheduling problem is defined as one in which the
knowledge related to tasks, their relations towards each
other, timing and the number of processors used are all a-
priori knowledge. In a nondeterministic problem on the
other hand, all or some of these factors can be input-
dependent and vary according to run time conditions.

(b) The tasks can be preemptive or non-preemptive: A
preemptive task scheduling problem allows the tasks to be
cut off from execution and another task to begin or
continue its execution cycle [operating system example].
A non-preemptive problem in which task execution must
be completely done before another task takes control of
the processor.

(c) The processors can be either homogenous or
heterogeneous: Heterogeneity of processors means that
the processors have different speeds or processing
capabilities. In a homogenous environment on the other
hand, all processors are assumed to have equal
capabilities.

II. PROPOSED ALGORITHM

A) GENETIC ALGORITHM STRUCTURE

Typically, a genetic algorithm consists of the following steps:

 GA1: Initialization – initialize the population.
 GA2: Evaluation – evaluate each chromosome using

fitness function.
 GA3: Genetic operations –Select the parent and apply

genetic operators on them to produce new chromosomes.
 GA4: Repeat steps GA2 and GA3 until termination

condition reached.

 From the above steps, we can see that genetic
algorithms utilize the concept of survival of the fittest; passing
“good” chromosomes to the next generation.

B) STRUCTURE OF THE CHROMOSOMES

We define our chromosome structure as a
combination of two strings SQ and SP, whose length equal to
the number of tasks. SQ (scheduling queue) maintains
precedence constraints between tasks, and an entry in SQ
represents a task to be scheduled. An entry in SP (scheduling
processor) represents the processor to the corresponding task
is scheduled onto.

The details to generate a chromosome can be seen in
following steps:

IJSART - Volume 1 Issue 7 –JULY 2015 ISSN [ONLINE]: 2395-1052

Page | 10 www.ijsart.com

 IP1: Select randomly a task from the entire entry tasks.
Set this task as the first task in SQ.

 IP2: Repeat step IP3 for (v-1) times.
 IP3: Randomly select a task who is not in SQ and whose

predecessors all have been in SQ, and add this task to SQ.
 IP4: For SP part, randomly generate an integer number

between 1 and m for each task in SQ and add it to SP.

C) EVALUATION

In order to select good chromosomes, we define the fitness
function as:

F(i) = (maxFT-FT(i) +1)/ (maxFT-minFT+1)

Where: maxFT and minFT is the maximum and
minimum finishing time of chromosomes in current
generation, respectively. FT (i) is the finishing time of the ith
chromosome. Once the fitness values of all the chromosomes
have been evaluated, we can select the higher fitness value
chromosomes.

Average Fitness: After calculating the fitness values of all
chromosomes, average values will be calculated by summing
up the fitness values of all chromosomes divided by
population size.

avgF= sum of fitness of all chromosomes/pop_size

Where avgF is the average fitness of the current generation
and pop_size is the population size.

III. REPRODUCTION: CROSSOVER AND MUTATION

A) CROSSOVER

As our chromosome comprises two separate parts SP
and SQ having different characteristics, we will employ
crossover policies for SQ part. Here, initially the population
size is 20. After sorting, out of 20 chromosomes, mutation is
applied on the first 10 best chromosomes (based on their
fitness values i.e. higher fitness values chromosomes) and
crossover operator is applied on the remaining 10
chromosomes.

Details about crossover are given in following steps:

CR1: Set the Crossover probability.
CR2: Select the two adjacent chromosomes after doing
mutation on first 10 best chromosomes. The crossover is
applied on the adjacent chromosomes for example on the 11th

and 12th chromosomes and then 13th and 14th chromosomes up
to 19th and 20th chromosome.
CR4: Generate two crossover points P and Q between 1 and v
for both chromosomes. For example, p=1 and q=5.
CR5: Rearrange the order of tasks in SQ between p and q of
one chromosome according to the order of tasks of another
chromosome, and put the resulting chromosomes after
crossover in next generation.

B) MUTATION

Mutation can be considered as a random alternation
of the individual. Details about mutation are given in
following steps:

MT1: Set the Mutation probability.
MT2: After sorting all the chromosomes based on their higher
fitness values, mutation is applied on the first 10 best
chromosomes. Firstly, select the first chromosome after
sorting and this is the best chromosome having higher fitness
value.
MT3: Generate two mutation points, p (tasks Ti) and q (Task
Tj) between 1 and v for the selected chromosome. For
example p=3 and q=8.
MT4: Form a new chromosome by exchanging the two point
p and q in the chromosome.

IV. CONCLUSION

 The problem of scheduling of tasks to be executed on
a multiprocessor system is one of the most challenging
problems computing. Genetic algorithms are well adapted to
multiprocessor scheduling problems. As the available
resources are increased to the GA, it is able to find better
solutions. GA performs better as compared to other traditional
methods. Overall, the GA appears to be the most flexible
algorithm for problems using multiple processors. It also
indicates that the GA is able to adapt automatically to changes
in the problem to be solved.

REFERENCES

[1] G. Syswerda and J. Palmucci, “The application of

genetic algorithms to resource scheduling”,
Proceedings of the Fourth International Conference
on Genetic Algorithms and Their Applications, pages
502-508, San Mateo, CA, July 1991.

[2] Goldberg, David E, “Genetic Algorithms in Search,
Optimization and Machine Learning”, Kluwer
Academic Publishers, Boston, 1989.

IJSART - Volume 1 Issue 7 –JULY 2015 ISSN [ONLINE]: 2395-1052

Page | 11 www.ijsart.com

[3] Mitchell, Melanie, “An Introduction to Genetic
Algorithms”, MIT Press, Cambridge, MA. 1996.

[4] L.M.Schmitt, “Fundamental Study Theory of Genetic
Algorithms”, International Journal of Modelling and
Simulation Theoretical Computer Science. 2001.

[5] C. V. Ramamoorthy, "Optimal scheduling strategies
in a multiprocessor system", IEEE Trans. Computers,
vol. C-2I.,Feb. 1972.

[6] E. S. H. Hou, R. Hong, and N. Ansari, “Efficient
multiprocessor scheduling based on genetic
algorithms”, IEEE 1990.

[7] Muhhamad K. Dhodhi, Imtiaz Ahmad, Ishfaq ahmad,
“A multiprocessor scheduling scheme using Problem-
space genetic algorithms”, IEEE 1995.

[8] Ali Pedram, “A method for scheduling multi
processing systems with genetic algorithm”,
International Journal of Engineering and Technology
Vol. 1, No. 2, June, 2009.

[9] Intisar A.Majied Al-Said, Nedhal Al-Saiyd, Firas
Turki Attia, “Multiprocessor scheduling based on
genetic algorithms”, 2009.

[10] Sachi Gupta, Gaurav Agarwal, “Task Scheduling in
Multiprocessor System Using Genetic Algorithm”,
Second International Conference on Machine
Learning and Computing, IEEE 2010.

[11] Amir Masoud Rahmani and Mojtaba Rezvani, “A
Novel Genetic Algorithm for Static Task Scheduling
in Distributed Systems”, 2009.

[12] Carnegie-Mellon, “Genetic Algorithms and Their
Applications”, Proc. of the First Int. Conference, July
24-26, 1985.

[13] Dr. Franz Rathlauf, “Representations for Genetic and

Evolutionary Algorithms”, 2nd edition, @ Springer.
2006.

