
IJSART - Volume 1 Issue 6 –JUNE 2015                                                                                             ISSN [ONLINE]: 2395-1052 

Page | 186                                                                                                                                                                     www.ijsart.com 

 

Optimization of Machining Processes using Teaching 

Learning Based Optimization Technique 
 

H. S. Keesari
1
, N. V. Lakal

2
, M. N. Chougule

3 

1, 2, 3 Department of Mechanical Engineering  
1, 2, 3 Sinhgad Institute of Technology 

 

Abstract- In this work, ‘teaching–learning-based optimization 
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Benchmark functions and Machining Operations. This 

algorithm is inspired by the teaching–learning process and it 

works on the effect of influence of a teacher on the output of 
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I. INTRODUCTION 

 

  With the passage of time various machining 

processes have been used and worked along with 

modification, in industries but to ensure smooth processing 

and efficiency in operation. Different types of optimization 

algorithm have been developed such as  Genetic 

Algorithm(GA),Harmony Search (HS), Artificial Bee Colony 

(ABC),particle swarm optimization, Shuffled frog leaping etc. 

                 

These work were previously attempted by various 

researchers using different optimization techniques and in the 

present work, advanced optimization algorithm named 

‘teaching–learning-based optimization (TLBO)’ is applied to 

various machining operations to justify. 

These are the following are machining operations which are 

optimized:- 

 Electrochemical Machining,  

 Electrochemical Discharge Machining,  

 Multi-pass milling 

 Abrasive water jet machining 

 

  The next section describes a detailed review of the 

algorithm named ‘Teaching–learning-based optimization 

algorithm’. 

 

II. TEACHING-LEARNING BASED OPTIMIZATION 

ALGORITHM 

 

Teaching–learning-based optimization algorithm 

(TLBO) is a teaching–learning process inspired algorithm 

recently proposed by  Rao et al. (2011,  2012) and  Rao and 

Patel (2012) based on the effect of influence of a teacher on 

the output of learners in a class. The algorithm mimics 

teaching–learning ability of teacher and learners in a class 

room. Teacher and learners are the two vital components of 

the algorithm and describes two basic modes of the learning, 

through teacher (known as teacher phase) and interacting with 

the other learners (known as learner phase). A high quality 

teacher is usually considered as a highly learned person who 

trains learners so that they can have better results in terms of 

their marks or grades. Moreover, learners also learn from the 

interaction among themselves which also helps in improving 

their results. 

 

TLBO is population based method. In this algorithm 

a group of learners are considered as population and different 

subjects offered to the learners are considered as different 

design para-meters and a learner’s result is analogous to the 

‘fitness’ value of the optimization problem. The best solution 

in the entire population is considered as the teacher. The 

design parameters are actually the parameters involved in the 

objective function of the given optimization problem and the 

best solution is the best value of the objective function. The 

working of TLBO is divided into two parts, ‘Teacher phase’ 

and ‘Learner phase’. Working of both the phase is explained 

below. 

 

Teacher phase 

 

It is the first part of the algorithm where learners 

learn through the teacher. During this phase a teacher tries to 

increase the mean result of the class in the subject taught by 

him or her depending on his or her capability. At any iteration 

i, assume that there are ‘m’ number of subjects (i.e., design 

parameters), ‘n’ number of learners (i.e., population size, 

k¼1,2, y, n) and Mj,i be the mean result of the learners in a 

particular subject ‘j’ (j¼1,2, y, m) The best overall result Xtotal-

kbest,i, obtained in the entire population of learners considering 

all the subjects together can be considered as the result of best 

learner kbest. However, as the teacher is usually considered as a 

highly learned person who trains learners so that they can have 
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better results, the best learner identified is considered as the 

teacher.  

 

TF is not a parameter of the TLBO algorithm. The 

value of TF is not given as an input to the algorithm and its 

value is randomly decided by the algorithm. After conducting 

a number of experiments on many benchmark functions it is 

concluded that the algorithm performs better if its value is 

between 1 and 2. However, the algorithm is found to perform 

much better if the value of TF is either 1 or 2  to simplify the 

algorithm All the accepted function values at the end of the 

teacher phase are maintained and these values become the 

input to the learner phase. 

 

 Learner phase 

 

It is the second part of the algorithm where learners 

increase their knowledge by interaction among themselves. A 

learner interacts randomly with other learners for enhancing 

his or her knowledge. A learner learns new things if the other 

learner has more knowledge than him or her. Considering a 

population size of ‘n’, the learning phenomenon of this phase 

is expressed below. 

                

Randomly select two learners P and Q such that 

X0
total-P,i a X0

total-Q,i (where, X0
total-P,i and X0

total-Q,i are the 

updated values of if it gives a better function value. All the 

accepted function values at the end of the learner phase are 

maintained and these values become the input to the teacher 

phase of the next iteration 

                  

For i = 1: Pn 

Randomly select two learners Xi and Xj, where i is 

not equal to j 

      If   f (Xi) < f (Xj) 

          Xnew, i = Xold, i + ri (Xi – Xj) 

          Else 

          Xnew, i = Xlod, i + ri (Xj – Xi) 

          End  

          End  

              Accept Xnew if it gives a better function value. 

 

III. OPTIMISATION OF VARIOUS MACHINING 

OPERATIONS USING TLBO ALOGRITHM 

 

Now it is the time to articulate the research work 

with ideas gathered in above steps by adopting any of below 

suitable approaches: 
 

A. Electrochemical Discharge Machining 

 

Electrochemical discharge machining (ECDM) is a 

hybrid advanced machining process which combines the 

features of electrochemical machining (ECM) and electro 

discharge machining (EDM). One of the major advantages of 

ECDM, over ECM or EDM, is that the combined metal 

removal mechanisms in ECDM, yields a much higher 

machining rate. If a voltage is applied to an electrochemical 

cell beyond critical voltage, discharge initiates between one 

tool of the electrodes and the surrounding electrolyte, which is 

termed here as electrochemical discharge. When the applied 

voltage is increased beyond a threshold value, hydrogen gas 

bubbles evolve in large number at the tip of cathode and grow 

in size. Their nucleation site density increases, current path 

gets restricted between cathode and electrolyte interface 

causing discharge to occur at this interface instantly. Thus, 

discharge in ECDM always occurs when the voltage in an 

electrolytic cell is increased beyond a threshold value. 

 

ECDM is a very recent technique in the field of 

advanced machining to machine electrically non conductive 

materials using electrochemical discharge phenomenon. 

Various input parameters involved in the ECDM process are 

electrolyte, temperature, applied voltage, inductance, current, 

pulse density, discharge frequency, etc. In the literature, few 

works were reported on the electrochemical discharge 

machining.  

 

Various parameters considered were applied voltage, 

electrolyte concentration and inter-electrode gap, etc. and the 

responses includes material removal rate, radial overcut and 

thickness of heat affected zone. The model was developed 

based on response surface methodology and finally the output 

of the work recommended that applied voltage has more 

significant effects on all the responses as compared to other 

machining parameters. 

 

Objective function- 
 

ZMRR, (mg/hr) = 4.96423 – 0.20418x1 + 0.09862x2 + 
0.00851x3 + 0.00249x12 – 0.00086x                 + 0.00039x32 
– 0.00181x1x2 – 0.00104x1x3 + 0.00125x2x3 
 
ZROC, (mm) = 3.15622 – 0.08019x1 - 0.07678x2 – 
0.00356x3 + 0.00069x12 + 0.00048x22 + 0.00016x32 + 
0.00072x1x2 – 0. 00026x1x3 + 0.00041x2x3 
 
ZHAZ, (mm) = 0.940335 – 0.019541x1 – 0.028638x2 – 
0.003122x3 + 0.000147x12+ 0.000242x22 +0.000017x32 + 
0.000251x1x2 – 0.000017x1x3 + 0.000106x2x3 

 
Where x1 is the applied voltage (V), x2 is the 

electrolyte concentration (wt %) and x3 is the                  inter-
electrode gap. 
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Constraints – 

 

          Applied voltage (V) = 50 – 70  

          Electrolyte concentration (wt %)  

          Inter-electrode gap (mm) = 20 – 40  

 

Table 1. Comparison of results of Electrochemical Discharge 

Machining 

 
 

 
Fig 1. Convergence global minimum of Radial Overcut v/s 

Number of generations 

 

TLBO algorithm has increased the MRR from 1.3372 

mg/h to 1.6202 mg/h thereby giving improvement over 18 %. 

Convergence curve given by Samanta and Chakraborty (2011) 

shows that number of iterations used was 100 and maximum 

MRR was converged after 30 iterations. However, TLBO 

algorithm has converged at the maximum MRR in tenth 

iteration. In case of minimization of ROC and HAZ, any 

improvement in the result is not observed, but in this case also, 

TLBO algorithm has converged faster result and needs 

population size of 10 and 20 iterations, whereas algorithm 

used by Samanta and Chakraborty (2011) had taken 

population size of 2000 and 100 iterations. Thus TLBO 

algorithm has proved its effectiveness in terms of faster 

convergence rate as compared to other advanced algorithm. 

 

 
Fig 2. Convergence global minimum of Heat Affected Zone  

v/s Number of generations 

 

B. Electro-Chemical Machining Process 

 

Electrochemical machining (ECM) is a modern 

machining process that relies on the removal of workpiece 

atoms by electrochemical dissolution (ECD) in accordance 

with the principles of Faraday (1833).  

 

Electrolysis occurs when an electric current passes 

between two electrodes dipped into an electrolyte solution. 

The system of the electrodes and the electrolyte is referred to 

as the electrolytic cell. The chemical reactions, which occur at 

the electrodes, are called the anodic or cathodic reactions. ED 

of the anodic workpiece forms the basis for ECM of metals. 

The amount of metal dissolved (removed by machining) or 

deposited is calculated from Faraday’s laws of electrolysis, 

which state that 

1. The amount of mass dissolved (removed by machining), 

m, is directly proportional to the amount of electricity. 

m ∝ It 

2. The amount of different substances dissolved, m, by the 

same quantity of electricity (It) is proportional to the 

substances’ chemical equivalent weight e. 

m ∝ e 

where 

I = electrolyzing current, A 

t = machining time, min 

e = chemical equivalent weight, g 

A = atomic weight 

Z = workpiece valence 

 

ECM uses a direct current at a high density of 0.5 to 

5 A/mm2 and a low voltage of 10 to 30 V. The machining 

current passes through the electrolytic solution that fills the 

gap between an anodic workpiece and a preshaped cathodic 
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tool. The electrolyte is forced to flow through the 

interelectrode gap at high velocity, usually more than 5 m/s, to 

intensify the mass and charge transfer through the sub layer 

near the anode. The electrolyte removes the dissolution 

products, such as metal hydroxides, heat, and gas bubbles, 

generated in the interelectrode gap. When a potential 

difference is applied across the electrodes, several possible 

reactions occur at the anode and the cathode the dissolution 

reaction of iron in a sodium chloride (NaCl) water solution as 

an electrolyte. The result of electrolyte dissociation and NaCl 

dissolution leads to 
 

H2O → H+ + OH− 

NaCl → Νa+ + Cl− 
 

The negatively charged anions OH− and Cl− move 

toward the anode, and the positively charged cations of H+ 

and Na+ are directed to the cathode. At the anode, Fe changes 

to Fe++ by losing two electrons 
 

Fe → Fe++ + 2e 
 

At the cathode, the reaction involves the generation 

of hydrogen gas and the hydroxyl ions. 
 

2H2O + 2e → H2 + 2(OH)− 
 

The outcome of these electrochemical reactions is 

that iron ions combine with other ones to precipitate out as 

iron hydroxide, Fe(OH)2. 
 

Fe + 2H2O → Fe(OH)2 + H2 
 

The ferrous hydroxide may react further with water 

and oxygen to form ferric hydroxide, Fe(OH)3. 
 

4Fe(OH)2 + 2H2O + O2 → 4Fe(OH)3 
 

With this metal-electrolyte combination, electrolysis 

has involved the dissolution of iron, from the anode, and the 

generation of hydrogen, at the cathode. 

 

Objective function: 

 

ZMRR, (g/min) = 1.19263 + 0.05688x1 – 0.13590x2 + 

0.09215x3 – 5.45671x4 – 0.00004x12 + 0.01232x22 + 

0:00029x32 – 0.36444x42 – 0.00365x1x2 – 0.00067x1x3 + 

0.01407x1x4 – 0.01045x2x3 + 0:26505x2x4 + 0.09247x3x4 

 

ZROC (mm) = - 2.10705 + 0.01065x1 + 0.31849x2 + 

0:00266x3 + 0.48742x4 – 0.00002x12 – 0.01223x22 + 

0.00011x32 + 0.08501x42 – 0.00040x1x2 – 0.00006x1x3 – 

0.00199x1x4 + 0.00044x2x3 – 0.02656x2x4 – 0.00781x3x4 

 

Where, x1 is the electrolyte concentration, x2 is the 

electrolyte flow rate, x3 is the applied voltage and x4 is the 

inter-electrode gap. The bounds for these parameters are given 

as: 
 

Constraints 
 

Electrolyte concentration (g/l) = 15 – 75 

Electrolyte flow rate (l/min) = 10 – 14 

Applied voltage (V) = 10 – 30 

Inter-electrode gap (mm) = 0.4 – 1.2 

 

Samanta and Chakraborty (2011) had applied 

artificial bee colony algorithm for obtaining the optimized 

parameters of ECM process. The maximum MRR obtained by 

Samanta and Chakraborty (2011) was 1.4551 (g/min) and the 

minimum ROC was 0.0824 mm. For this purpose, Samanta 

and Chakraborty (2011) had used a large population size of 

2000 and had taken 100 iterations to obtain the optimum 

results. The population size is used randomly starting with the 

low value and a promising result is shown by a population size 

of 10.  

 

Table.2 Comparison of TLBO for Electro-Chemical 

Machining Process 

 
 

 
Fig 3. Convergence global minimum of Radial Overcut v/s 

Number of generations 
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Fig 4. Convergence material removal rate v/s Number of 

generations 

 

The TLBO algorithm has given a maximum MRR of 

1.4551 (g/min) and minimum ROC of 0.0818 mm. The 

optimized parameters obtained for this result is given along 

with its comparison with the other results. Even though the 

results of TLBO algorithm are similar to that of the ABC 

algorithm, but the TLBO algorithm has used a very low 

population size of 10 as compared to that of 2000 in case of 

ABC algorithm. Similarly, the TLBO algorithm need only 20 

iterations for consistency and has converged at the optimum 

result in fifth iteration only. Thus, TLBO algorithm has proved 

its superiority in terms of faster convergence rate.  

 

C. Multi-pass milling process 

 

In today’s manufacturing environment many large 

industries have attempted to introduce the flexible 

manufacturing system (FMS) as a strategy to adapt to the 

ever-changing competitive market requirement. The flexible 

manufacturing system involves highly automated and 

computer controlled machines. Due to high capital and 

machining costs, there is an economic need to operate these 

machines as efficiently as possible in order to obtain the 

required pay back. The success of the machining operation 

depends on the selection of machining process parameters. 

Proper selection of process parameters plays a significant role 

to ensure quality of product, to reduce the machining cost, to 

increase Productivity.  

 

Milling is the machining process in which the metal 

is removed by a rotating multiple tooth cutter. As the cutter 

rotates, each tooth removes a small amount of material from 

the advancing work for each spindle revolution. The relative 

motion between cutter and the work piece can be in any 

direction and hence surfaces having any orientation can be 

machined in milling. Milling operation can be performed in a 

single pass or in multiple passes. Multi-pass operations are 

often preferred to single pass operations for economic reasons 

and are generally used to machine stocks that cannot be 

removed in a single pass. 

 

The optimization model of milling process 

formulated in the present work is based on the analysis given 

by Sonmez et al. The decision variables (i.e. process 

parameters) considered for this model are feed per tooth (fz), 

cutting speed (V) and depth of cut (a).In this case we 

optimized the process time required. 

 

The objective function and the constraints are 

formulated as discussed:  

 

For a milling operation the total production time 

(Tpr) is composed of the following items: 

(a) Machine preparation time (Tp)  

(b) Loading–unloading time (TL). 

(c) Process adjusting and quick return time (Ta). 

(d) Machining time (Tm). 

(e) Tool changing time per component (Tc) 

 

Objective function 

 

The objective function for multi-pass milling 

operation is expressed as given 

 

Tpr =
Ts

Nb
+ TL + Np Ta +  

πDL

fzi
z×1000 ×V i

+
Np

i=1

Td πLV i
 1

m −1 ai

ev
m fzi

 
u v

m −1 
ar

rv m z n v m −1 λs
qv m 

1000 ×Cv
1 m D bv m −1 × Bm ×Bh ×Bp ×Bt 

1 m   

 

Constraints- 
       

Following three constraints are considered in this 

optimization model. 

 

a) Arbor strength 

      Fs- Fc =0 

b) Arbor deflection 

      Fd- Fc =0  

 

Where,  

Permissible force for arbor deflection (kg) = 𝐹𝑑 =
4𝐸𝑒𝑑𝑎

4

𝐿𝑎
3  

c) Power 

𝑃𝑐 −
𝐹𝑐𝑉

6120
≥ 0 

   where Pc = cutting power (kW) = Pmη,  

   Pm = nominal motor power, 

   η = overall efficiency. 
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Process parameters- 

       

The three process parameters and their bounds 

considered in this work are given in the following sections. 
 

a) Feed per tooth 

      𝑓𝑧𝑚𝑖𝑛
≤ 𝑓𝑧 ≤ 𝑓𝑧𝑚𝑎𝑥  

 

b) Cutting speed 

Vmin≤V≤Vmax 

Where 

 𝑉𝑚𝑎𝑥 =
𝜋𝐷𝑁𝑚𝑎𝑥

1000
 

 𝑉𝑚𝑖𝑛 =
𝜋𝐷𝑁𝑚𝑖𝑛

1000
 

 

c) Depth of cut 

amin≤ a ≤amax (mm) 

Where, amin is the minimum depth of cut 

                      amax is the maximum depth of cut. 

 

Specifications of the required parameters and values 

of the constants considered by Sonmez et al. and used in the 

present work are as follows: 

 

Type of machining: plain milling.  

Motor power (Pm) = 5.5 kW, efficiency, h = 0.7.  

Arbor diameter, da = 27 mm, arbor length between supports,  

La= 210 mm.  

Permissible bending stress of arbor, kb: 140 MPa. 

Permissible torsional stress of arbor, kt: 120 MPa 

Modulus of elasticity of arbor material, E = 200 GPa.  

Spindle speed range: (31.5–2000) rpm, feed rate range: (14–

900) mm/min.  

Tool material: HSS, tool diameter, D = 63 mm,  

Number of teeth, z = 8. Material: structural carbon steel (C # 

0.6%).  

Tensile strength: 750 MPa, Brinell hardness number = 150. 

 

 
Fig 5. Convergence of Total production time v/s Number of 

generations 

Length of cut, La = 160 mm, width of cut, ar = 50 

mm, depth of cut, a = 5 mm. Loading and unloading time of 

one work piece, TL = 1.5 min. Set-up time of fixtures and 

machine tool, Ts = 10 min. Tool change time, Tc = 5 min. 

Process adjusting and quick return time, Ta = 0.1 (min/part). 

Lot size (number of parts in the batch), Nb= 100. Cutting 

inclination = 308. Constants: Bm= 1, Bk = 1, Bp = 0.8, Bt= 0.8, 

m = 0.33, ev= 0.3, Uv = 0.4, rv = 0.1, nv= 0.1, qv= 0, Cv= 35.4, 

bv = 0.45, Czp= 68.2, bz= 0.86, ez = 0.86, and uz = 0.72. 

 

𝑓𝑧𝑚𝑖𝑛
=

𝑓𝑚𝑖𝑛

𝑧𝑁𝑚𝑎𝑥
=

14

8 × 2000
= 0.000875(𝑚𝑚/𝑡𝑜𝑜𝑡ℎ) 

 

𝑓𝑧𝑚𝑎𝑥
=

𝑓𝑚𝑎𝑥

𝑧𝑁𝑚𝑖𝑛
=

900

8 × 31.5
= 3.571(𝑚𝑚/𝑡𝑜𝑜𝑡ℎ) 

 

Thus 

0.000875≤fz≤3.571 

 

𝑉𝑚𝑎𝑥 =
𝜋𝐷𝑁𝑚𝑎𝑥

1000
=

𝜋𝐷𝑁𝑚𝑎𝑥

1000
=

𝜋 × 63 × 2000

1000
= 395.84(𝑚/𝑚𝑖𝑛) 

 

𝑉𝑚𝑖𝑛 =
𝜋𝐷𝑁𝑚𝑖𝑛

1000
=

𝜋𝐷𝑁𝑚𝑖𝑛

1000
=

𝜋 × 63 × 31.5

1000
= 6.234(𝑚/𝑚𝑖𝑛) 

Thus 

Upper and lower boundaries of cutting velocity  

6.234≤V≤395.84 (m/min) 
 

Upper and lower boundaries of depth of cut  

0.5≤a≤4 (mm)  

 

Table.3 Overall result comparison of multi-pass milling 

process 

 
 

From table 3 ad figure 5 it is clear that the optimized 

value obtained by TLBO method is better than ABC and PSO 

methods. Also the optimum value obtained in less no. of 

iterations by TLBO method than ABC and PSO methods. 

 

D. Abrasive water jet machining 

 

This case study Azlan Mohd Zain et al. optimized the 

abrasive water jet machining by Simulated Annealing (SA), 

Genetic Algorithm (GA), integrated SA–GA-type1 and 

integrated SA–GA type2. Simulated Annealing (SA) and 

Genetic Algorithm (GA) soft computing techniques are 

integrated to estimate optimal process parameters that lead to a 
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minimum value of machining performance. The objectives of 

the proposed TLBO algorithm estimate the minimum value of 

the machining performance compared to the machining 

performance value of the experimental data, regression 

modeling, to estimate the optimal process parameters values 

that has to be within the range of the minimum and maximum 

process parameter values of experimental design, and to 

estimate the optimal solution of process parameters with a 

small number of iteration.  

 

The target of the optimization process in this study is 

to determine the optimal values of the process parameters that 

lead to the minimum value of Roughness (Ra) using TLBO 

algorithm. 

 

Fig 6. Convergence of Roughness (Ra) v/s Number of 

generations 

 

The used objective function is expressed as follows. 

Minimize 

Ra= cVqprhsdrmuε 

=min(−5.07976+0.08169V+0.07912P−0.34221h−0.08661d−0.

34866m−0.00031V2−0.00012P2+0.10575h2+0.00041d2+0.075

90m2−0.00008Vm−0.00009Pm+0.03089hm+0.00513dm) 

 

Where, 

V is the traverse cutting speed in mm/min 

P is the water jet pressure in MPa 

h is the standoff distance in mm 

d is abrasive grit size in m, 

m is the abrasive flow rate in g/s 

ε is experimental error 

 

Limits taken are as follows- 

50 ≤ V ≤ 150 

125 ≤ P ≤ 250 

1 ≤ h <≤4 

60 ≤ d ≤120 

0.5 ≤ m ≤ 3.5 

Table.5 Results comparison of AWJ machining process 

 
 

Form results comparison it is seen that results 

obtained by TLBO, are very much better than previous 

methods. Also obtained in very less no. of iterations. Obtained 

roughness value (1.5223) is more optimized than previous 

optimum solution. 

 

VI. CONCLUSION 

 

Teaching Learning Based Optimization technique is 

one of the nature-inspired population based advance 

optimization method and it is found that Teaching Learning 

Based Optimization (TLBO) algorithm is fast, correct and 

effective than other optimization techniques. 

 

The tested four cases show the obtained result by 

TLBO algorithm is optimized better than the previous results. 

Roughness value (Ra) in Abrasive water jet machining 

optimized from 1.5234 to 1.5223. It is observed that result 

obtained is much better than all previous methods compared. 

In ECM process the result are almost same and sometimes 

better than the previous result. The TLBO algorithm needs 

only 10 iterations for consistency and has converged the 

optimum result within 5 iterations  

 

In ECDM process, minimization of ROC and HAZ, 

gives sufficient improvement. It had reached the optimum 

result within 5-10 iterations by using population size of 10 

only .Hence, TLBO algorithm has proved its effectiveness in 

terms of faster convergence rate. In multi pass milling process 

milling time is optimized to 2.0165 min from 3.24 min. 

Hence, it is clear that the optimized value obtained by TLBO 

method is better than ABC and PSO methods. Also the 

optimum value is obtained within less no. of iterations 
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