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Abstract- Applications of Association rule mining are market 
basket analysis, customer’s purchase pattern and web data 
accessing patterns. However, if new transactions are added time 

to time to the database means if the datasets are incremental in 

nature, frequent itemsets and association rules may change. 

Some of the new itemsets may become frequent, while some 
previously existing frequent set may become infrequent. Due to 

updated database some rules that are already derived may 

become obsolete and some new rules may be generated. For the 
new consistent rules over the updated dataset, if the association 

mining technique redo the rule generation process for the whole 

dataset, based on the frequent itemsets, simply by discarding the 

earlier computed results, it will be inefficient. It is mainly 
because of  the multiple scanning over the older dataset. Various 

approaches have been proposed for incremental association rule 

mining as apriori based techniques, tree based and hashing 
based. In this paper, these types of incremental association 

techniques are reviewed. 

 
Index Terms - Incremental Mining, Support, Confidence, 
Frequent Itemset, Strong Association Rule. 

 

 
I. INTRODUCTION 

 

Due to the increasing use of large data with high 

computation required for various applications, the importance of 

data mining has grown rapidly. From the point of view of business 

application, analysis of previous transaction data can provide 

valuable information on behavior of customer, and thus help in 

making business decisions. Thus it is necessary to collect and 

analyze a sufficient data properly before making any decisions. 

Since the amount of data being processed is large, it is important 

for the mining algorithms to be very computationally efficient. 

Various data mining algorithms have been proposed in the 

literature to explore knowledge. Recently many important 
applications have created the need of incremental mining. 

Mining association rules is the core task of numerous data mining 

techniques. As the amount of data increases, designing an efficient 

mining algorithm becomes increasingly important; accordingly, 

two of the main issues concerning data mining are therefore 

studied extensively herein. One is the development of algorithms 

for mining rules or patterns. The second is the design of algorithms 

to update and maintain rules, called incremental mining. 

Association rule mining is a promising data mining 

technique which discovers strong associations or correlation 
relationships among data. Given a set of transactions (similar to 

database records in this context), where each transaction consists of 

items (or attributes), an association rule is an implication of the 

form X ->Y , where X and Y are sets of items and X ∩Y = Ǿ. The 

 
support of this rule is defined as the percentage of transactions that 

contain the set X, while its confidence is the percentage of these 

“X" transactions that also contain Y. In association rule mining, all 

items with support higher than a specified minimum support are 

called large or frequent itemsets. An itemset X is called an i-

itemset if it contains i items. 

The very first association rule mining algorithm is the 

Apriori algorithm. The Apriori algorithm gives solution for two 
sub-tasks (1) to find all frequent itemsets, and (2) to use these 

frequent itemsets to generate association rules. The first task 

importantly governs the overall performance of the mining process. 

After frequent itemsets have been determined, the corresponding 
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association rules may be derived easily. One has  to first find out 

the frequent itemset using Apriori algorithm, Then, Association 

rules will be generated using min. support & min. confidence. The 

set of frequent 1-itemsets, L1, consists of the candidate 1- itemsets 

satisfying minimum support.  In the first iteration of the algorithm, 

each item is a member of the set of candidate. To discover the set 

of frequent 2-itemsets, L2, the algorithm uses L1 Join L1 to 

generate a candidate set of 2-itemsets, C2. Next, the transactions in 

D are scanned and the support count for each candidate itemset in 

C2 is accumulated (as shown in the middle table). The set of 
frequent 2-itemsets, L2, is then determined, consisting of those 

candidate 2-itemsets in C2 having minimum support. The 

generation of the set of candidate 3-itemsets, C3 , involves use of  

the Apriori Property.  In order to find C3, we compute L2 Join L2. 

C3 = L2 Join L2.  Now, Join step is complete and Prune step will be 

used to reduce the size of C3. Prune step helps to avoid heavy 

computation due to large Ck. The algorithm uses L3 Join L3 to 

generate a candidate set of 4-itemsets, C4, this itemset is pruned 

which are not frequent. Suppose, C4 = φ, then algorithm 

terminates, having found all of the frequent items. This completes 

Apriori Algorithm. These frequent itemsets will be used to 

generate strong association rules (where strong association rules 
satisfy both minimum support & minimum confidence). 

 

II.   TECHNIQUES OF INCREMENTAL 

ASSOCIATION RULE MINING 

 

     1. FAST UPDATE (FUP)  
 

The first technique [2] was proposed by Cheung, Han et 
al. The FUP algorithm is based on Apriori and takes into account 

only newly added transactions. Let db be a set of new 

transactions and DB+ be the new updated database (including all 

transactions of DB and db). An itemset  X is either frequent or 

infrequent in DB or db. Therefore, X has four possibilities, as 

shown in Table 1. In the possibility 1, FUP scans db to obtain the 

occurrence count of each 1-itemset. Since the support counts of 

Fk in older database are known by previous mining, the total  

frequency of  X is easily calculated if X is in 2. If X is in 3, DB 

i.e. older database must be rescanned. Similarly, the next pass 

scans db to count the support of candidate 2-itemsets of db i.e. 

incremental database. The process is reiterated until all frequent 
itemsets have been detrermined. In the worst case, FUP does not 

minimize the number of the original database scan passes. 

 

 
                        Table 1: Four cases associated with FUP 

 

   2. FUP2  
 

In 1997, Cheung et al. [3] described the FUP2 algorithm, 

which is a more generalized incremental technique than FUP. An  

advanced version of FUP algorithm FUP2 is introduced for 

updating the existing frequent items and association rules when 

transactions are added to and deleted from the original database. It 

can deal with insertion as well as deletion. FUP2 performs 

efficiently not only on growing database but also on trimming 

data. The difference between FUP2 and Apriori is that FUP2 

separates the candidate item-sets in the new database into two 

subsets in each pass of the algorithm. That is, in kth iteration, 

candidate itemsets Ck is divided into Ak and Bk, where Ak is the 

intersection of Ck and Lk, Lk is the the previous frequent itemsets 
of size k in the old database. Bk is the remaining part of Ck not 

included in the set Lk, that is, Bk= Ck - (Ck ∩ Lk ). FUP2 algorithm 

also has poor performance. 

 

   3. UPDATE WITH EARLY PRUNING (UWEP)  
 

  Ayan et al. proposed an algorithm [4] to update large 

itemsets with early pruning. The benefit with UWEP are that it 

scans the existing database at most once and new database exactly 

once, and it generates and counts the minimum number of 

candidate itemsets in order to determine the updated set of large 

itemsets. Moreover, it prunes an itemset that will become small 

from the set of generated candidates as soon as possible by a look-

ahead pruning technique. Thus, look-ahead pruning results in a 

much smaller number of candidates in the computation of new 
large itemsets in the updated database. Now suppose that X is 

small in the updated database. So, any superset of X must also be 

small in the updated database. UWEP differs from the previous 

algorithms [4, 5] at this point, by pruning all supersets of an 

itemset from the set of large itemsets in DB i.e. older database as 

soon as it is known to be  small. In the previous algorithms, a k-

itemset is only checked in the kth iteration, but UWEP does not 

wait until the kth iteration in order to prune the supersets of an 

itemset in LDB (large itemsets in older database) that are small in 

LDB+db (large itemsets in updated database).  

Let X be a k-itemset which contains items I1, . , Ik. An immediate 

superset of X is a (k + l)-itemset which contains the k items in X 
and an additional item Ik+1.  If  X ¢ LDB, then X ϵLDB+db only if 

X ϵ Ldb. If X is large in DB, then X is also large in DB + db. In 

this case, we put X into LDB+& with the total support. If X is 

small in DB, we have to check whether it is large in DB+db or not. 

However, we do not know supportDB(X). We can obtain it by 

scanning DB. Thus this is more efficient technique than FUP2.  

 

      4. A LOW-SCAN INCREMENTAL ASSOCIATION RULE 

MAINTENANCE METHOD (MAAP) 
 

This algorithm[6] makes use of an Apriori property, and 

starting with the high level large itemsets in the older database 

mining result, it computes the equivalent high level large item- sets 

in the updated database as well as infers some low level large 

itemsets in this updated database. Thus, this algorithm eliminates 

the requirement of computing some low level large itemsets and 

save on rule maintenance time. It is advantageous when high level 

large itemsets generate a high percentage of low level large 

itemsets. All non- empty subsets of a items frequentet must be 

frequent. For example, if a frequent 3- itemset is L3={123}, we 
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can immediately infer that the following itemsets are frequent as 

well: {12}, {13}, {23}, {1}, {2}, {3}. Based on this principle, 

when association rules are to be maintained in the updated new 

database, the frequent itemsets can be computed from the highest 

level frequent itemsets, that is, from Lk. If any itemset in Lk is still 

frequent in the updated new database, its lower level subset 

itemsets are included to their appropriate level frequent itemsets in 

Lk-1, Lk-2, . . . , L1. 

For example, since L3= {123} is confirmed to be still frequent in 

the new database, this algorithm includes {12}, {13}, {23} to L2 
and {1}, {2}, {3} to L1. By doing so, some computation time is 

saved, the MAAP algorithm continues by checking if each itemset 

in L3 = { ABC, ACD, BCD } is still frequent in the updated new 

database. Since ABC is frequent in the new database, AB, AC, BC, 

A, B, C are also frequent itemsets. Thus, ABC is included in  L3‟ 

(Li‟ denotes the large i-itemsets in the updated new database), 

include AB, AC, BC to L2‟, include A, B, C to L1‟. 

The procedure of this algorithm starts by computing parts 

of new large itemsets using only itemsets that were frequent in the 

older database, and are guaranteed to still be frequent in the new 

database because of a superset itemset in a higher level new 

frequent itemset. Assume for each pass in the older database, we 
divide the candidate itemsets into two parts. One part consists of 

the frequent itemsets, another part is the small itemsets.Then in 

second step, Compute for each updated new frequent itemset, 

additional frequent item- sets that were frequent in the old database 

but not computed in the first step because their superset higher 

level itemset is small in the new updated database, but these older 

lower level frequent itemsets may still be frequent in the newly 

grown  database. In third step, It Computes the rest of the itemsets 

in the candidate itemsets that may be frequent itemsets in the new 

updated database. Since by the end of step 2 above, we reduced the 

sizes of all level infrequent  itemsets and candidate sets, the 
algorithm now takes each infrequent itemset Si = Ci- Li‟  and scans 

the updated new database to determine if these itemsets are 

frequent in the new  updated database. If they are frequent, they are 

included in the appropriate level new frequent itemset Li‟. In the 

last step, all level i candidate sets are adjusted to include the new 

frequent itemsets previously small in the older database at level (i-

1). This accomplishes the set computed above in Step 3 by 

including all candidate sets that arise from these new frequent 

itemsets.  
 

    5. COMPRESSED AND ARRANGED TRANSACTION 

SEQUENCE (CATS) TREE AND CANONICAL- ORDER 

(CAN) TREE    
   
  The FELINE Algorithm with the CATS Tree [7]  extends 

the idea of the FP-tree to improve storage compression, and allows 

frequent-pattern mining without the generation of candidate 

itemsets. The goal is to build a CATS tree as compact as possible. 

All the items are arranged in descending local frequency order in 
the CATS tree So, during the mining process, the FELINE 

algorithm needs to traverse both upwards and downwards to 

include frequent items. Extra cost is required for the swapping or 

merging of nodes to make it compact. 

CanTree [8] only requires one database scan. Items are 

arranged according to some canonical order, which can be defined 

by the user prior to the mining process or at runtime during the 

mining process. Specially, all the items can be consistently 

arranged in lexicographic order or alphabetical order. Once the 

ordering is defined (say, for DB), items will follow this ordering in 

the CanTrees for subsequently updated databases (e.g. DB∪db1, 

DB∪db1∪db2, ...) even the frequency ordering of items in these 

updated databases is different from DB. The ordering of items is 

unaffected by the changes in frequency caused by incremental 

updates. The frequency of a node in the CanTree is at least as high 
as the sum of frequencies of its children. CanTree may not be as 

compact as the corresponding CATS tree. However, it is important 

to note that CATS trees do not necessarily minimize computation 

or time because a lot of computation spent on finding mergeable 

paths as well as traversing paths upwards and downwards, while 

CanTrees significantly minimize computation and traversal time, 

because they easily find mergeable paths and require only upward 

path traversals.   

 

    6. ASSOCIATION RULE MINING BY MODIFIED 

APPROACH OF PROMISING FREQUENT ITEM- 
        SET ALGORITHM BASED ON BUCKET SORT 

APPROACH 
 

  A new idea of incremental association rule mining which 

does not scan original database. i.e. without scanning original 

database it will scan only updated database. This incremental 

association approach [9] for mining streamed data applies on  the 

dense data efficiently. This covered the old existed algorithm and 

minimized  the execution time and space complexity is also 

reduced, and developed a new approach that directly compares the 
updated as well as old record of the database and there is no need 

to include the older database with new coming data and the used 

buckets will give the accurate result. 

The itemset which are not frequent in original database 

but it could be frequent when updated transaction are added to 

database is called promising frequent itemset. This algorithm uses 

maximum support count of 1-itemset which is determined before 

and this will estimate infrequent itemset of original database which 

is going to be frequent when new transaction are added to the older 

database.  

Based on maximum support count of 1-itemset, promising itemset, 
Support is calculated using follows : 

Min_PIDBỤdb=min_suppDBUdb -  ( 
max 𝑠𝑢𝑝𝑝

𝑡𝑜𝑡𝑎𝑙  𝑠𝑖𝑧𝑒
∗ 𝑖𝑛𝑐_𝑠𝑖𝑧𝑒).  

It checks which item are frequent and which are 

promising frequent item set and make list of both type. Then, 
adding incremented database, calculating frequent itemset and 

promising frequent itemset of incremented database. Now apply 

bucket sort on updated promising frequent itemset list, then 

calculating  how many buckets are going to be frequent from 

promising list, now adding  support of needed bucket „s itemset to 

the support of old promising itemset . Finally, move new frequent 

itemset into old frequent itemset list and remove from promising 

itemset list. 
 

7. MINIMAL PERFECT HASHING AND PRUNING BASED 

INCREMENTAL MINING ALGORITHM 
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  DHP (Direct Hashing & Pruning)  and MPIP (Multi-

Phase Indexing and Pruning) [10] algorithms employ hash tables to 

reduce the database access times. They are  for deavery beneficial 

while dealing with the candidates of 2-itemsets i.e. C2, which is 

the most time-consuming step in association rules mining. 

Consequently, hashing-based association rule mining algorithms 

are more time saving than Apriori- based algorithms. IMPHP 

(Incremental Minimum Perfect Hashing and Pruning) algorithm 

has following advantages : 1)All the candidate itemset will be 

addressed by hashing into a hash table without collisions and their 
minimum support  can be calculated  by a hash function for latter 

process. 2.) When the database is updated, the arrangement of  

hash table will not be re- constructed. There is only a need to scan 

the updated parts and add new items into the end of the original 

hash table. Hence, the efficiency can be improved significantly.  

DHP employ hash functions to generate candidate itemsets 

efficiently, and DHP also employs effective pruning techniques to 

reduce the size of database. The potential-less itemsets will be 

filteredout in early stage of candidate generation, and the scanning 

of database will be avoided. Since DHP does not scan over the 

database all the time, the performance is also enhanced. DHP is 

particularly powerful for finding the frequent itemsets in starting 
stage. It finds 1-itemsets and makes a hash table for C2, and then 

determines L2 based on the hash table generated in previous stage. 

In MPIP algorithm, a unique address will be assigned to each 

itemset. It also enhances the accuracy of the hash table. All the  

entries in the hash table is used for determining the support  of 

corresponding itemset. Because of such type of structure, the 

repeated scanning of database can be avoided. Besides, the Bit 

Vector in the hash table can filter out the candidate itemset and 

directly indicate the large itemsets. Hence, once we construct the 

hashing table, the frequent itemsets are also found. 

In this algorithm, hashing address can be determined by a 
minimum perfect hashing function and mining with incremental 

transaction and item is also supported. In this section, we will 

analyze the regularity in 2-itemsets first and then advanced it to the 

case of 3-item and k-itemsets. Finally, the minimal perfect hashing 

function is obtained. The minimum perfect hashing function of 2-

itemset in list as following: 

Fn   (j1 , j2)  = 1  ,   for j1  = 1 and j2 = 2 

Otherwise, 

Fn   (j1 ,  j2) =  C2
j-1  +  j1 .       

Minimum perfect hashing function is employed in IMPHP 

to avoid collisions and enhanced the incremental mining 
efficiency. In addition, the arrangement of proposed hash table 

structure does not need to be reconstructed again when new items 

are added. All newly added items will be arranged at the end of the 

original hash table. Hence, the efficiency can be enhanced 

significantly when it applies for incremental association rule 

mining. 

 

III. COMPARATIVE STUDY OF 

      EXISTING RESEARCHES 
 

 
 

IV.CONCLUSION AND FUTURE WORK 
 

Association rule mining can give very useful and 

beneficial information, and improve the quality of business 

decisions in market, web based survey and in multinational 

companies. A number of  incremental mining algorithms have been 

developed by different researchers in need of applications which 

uses record based database and where database increments  rapidly. 

In todays scenario, a static approach can‟t persist for a long. The 

whole approach towards incremental mining is to make use of 

previously mined knowledge and scan the database so as to 

improve efficiency in terms of time and space . Most of the 
algorithms try to reduce the number of scans of database and 

maintain the association rules. Apriori based techniques like FUP 

requires more than two scans in worst case and FUP2 requires two 

complete scans of database, which are computationally less 

efficient  in terms of time. Tree based algorithms, like CAN tree 

and FELINE, need only single scan of database. CATS tree 

requires swapping, merging and splitting of tree nodes to make it 

as compact as possible, since it uses frequency dependent ordering 

and this drawback has been overcome in CAN tree. CAN tree uses 

user defined ordering before or after the mining process. CATS 

tree also takes large computation time in finding merge-able paths 
and needs downward traversals during mining. DHP and MPIP 

algorithms employ hash table structures to minimize the database 

access times. In MPIP algorithm, a unique address will be assigned 

to each itemset. It also enhances the accuracy of the hash table. All  

the entries in the hash table are used for determining the support  of 

corresponding itemset. Due to such type of structure, the repeated 

scanning of database can be avoided. Summarily, many algorithms 

have contributed  having goal of incremental mining, however still 

there are scopes to enhance the efficiency of algorithms, generation 

of new techniques. 
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