

IJSART - volume 1 Issue 1–JANUARY 2015 ISSN [ONLINE]: 2395-1052

Page | 38 www.ijsart.com

A Review of Incremental Association Rule Mining

Techniques

Pooja Dubey
1
, Dr. R. K. Gupta

2

(Department of CSE & IT)
1Madhav Institute of Technology & Science, Gwalior (India)

Abstract- Applications of Association rule mining are market
basket analysis, customer’s purchase pattern and web data
accessing patterns. However, if new transactions are added time

to time to the database means if the datasets are incremental in

nature, frequent itemsets and association rules may change.

Some of the new itemsets may become frequent, while some
previously existing frequent set may become infrequent. Due to

updated database some rules that are already derived may

become obsolete and some new rules may be generated. For the
new consistent rules over the updated dataset, if the association

mining technique redo the rule generation process for the whole

dataset, based on the frequent itemsets, simply by discarding the

earlier computed results, it will be inefficient. It is mainly
because of the multiple scanning over the older dataset. Various

approaches have been proposed for incremental association rule

mining as apriori based techniques, tree based and hashing
based. In this paper, these types of incremental association

techniques are reviewed.

Index Terms - Incremental Mining, Support, Confidence,
Frequent Itemset, Strong Association Rule.

I. INTRODUCTION

Due to the increasing use of large data with high

computation required for various applications, the importance of

data mining has grown rapidly. From the point of view of business

application, analysis of previous transaction data can provide

valuable information on behavior of customer, and thus help in

making business decisions. Thus it is necessary to collect and

analyze a sufficient data properly before making any decisions.

Since the amount of data being processed is large, it is important

for the mining algorithms to be very computationally efficient.

Various data mining algorithms have been proposed in the

literature to explore knowledge. Recently many important
applications have created the need of incremental mining.

Mining association rules is the core task of numerous data mining

techniques. As the amount of data increases, designing an efficient

mining algorithm becomes increasingly important; accordingly,

two of the main issues concerning data mining are therefore

studied extensively herein. One is the development of algorithms

for mining rules or patterns. The second is the design of algorithms

to update and maintain rules, called incremental mining.

Association rule mining is a promising data mining

technique which discovers strong associations or correlation
relationships among data. Given a set of transactions (similar to

database records in this context), where each transaction consists of

items (or attributes), an association rule is an implication of the

form X ->Y , where X and Y are sets of items and X ∩Y = Ǿ. The

support of this rule is defined as the percentage of transactions that

contain the set X, while its confidence is the percentage of these

“X" transactions that also contain Y. In association rule mining, all

items with support higher than a specified minimum support are

called large or frequent itemsets. An itemset X is called an i-

itemset if it contains i items.

The very first association rule mining algorithm is the

Apriori algorithm. The Apriori algorithm gives solution for two
sub-tasks (1) to find all frequent itemsets, and (2) to use these

frequent itemsets to generate association rules. The first task

importantly governs the overall performance of the mining process.

After frequent itemsets have been determined, the corresponding

IJSART - volume 1 Issue 1–JANUARY 2015 ISSN [ONLINE]: 2395-1052

Page | 39 www.ijsart.com

association rules may be derived easily. One has to first find out

the frequent itemset using Apriori algorithm, Then, Association

rules will be generated using min. support & min. confidence. The

set of frequent 1-itemsets, L1, consists of the candidate 1- itemsets

satisfying minimum support. In the first iteration of the algorithm,

each item is a member of the set of candidate. To discover the set

of frequent 2-itemsets, L2, the algorithm uses L1 Join L1 to

generate a candidate set of 2-itemsets, C2. Next, the transactions in

D are scanned and the support count for each candidate itemset in

C2 is accumulated (as shown in the middle table). The set of
frequent 2-itemsets, L2, is then determined, consisting of those

candidate 2-itemsets in C2 having minimum support. The

generation of the set of candidate 3-itemsets, C3 , involves use of

the Apriori Property. In order to find C3, we compute L2 Join L2.

C3 = L2 Join L2. Now, Join step is complete and Prune step will be

used to reduce the size of C3. Prune step helps to avoid heavy

computation due to large Ck. The algorithm uses L3 Join L3 to

generate a candidate set of 4-itemsets, C4, this itemset is pruned

which are not frequent. Suppose, C4 = φ, then algorithm

terminates, having found all of the frequent items. This completes

Apriori Algorithm. These frequent itemsets will be used to

generate strong association rules (where strong association rules
satisfy both minimum support & minimum confidence).

II. TECHNIQUES OF INCREMENTAL

ASSOCIATION RULE MINING

 1. FAST UPDATE (FUP)

The first technique [2] was proposed by Cheung, Han et
al. The FUP algorithm is based on Apriori and takes into account

only newly added transactions. Let db be a set of new

transactions and DB+ be the new updated database (including all

transactions of DB and db). An itemset X is either frequent or

infrequent in DB or db. Therefore, X has four possibilities, as

shown in Table 1. In the possibility 1, FUP scans db to obtain the

occurrence count of each 1-itemset. Since the support counts of

Fk in older database are known by previous mining, the total

frequency of X is easily calculated if X is in 2. If X is in 3, DB

i.e. older database must be rescanned. Similarly, the next pass

scans db to count the support of candidate 2-itemsets of db i.e.

incremental database. The process is reiterated until all frequent
itemsets have been detrermined. In the worst case, FUP does not

minimize the number of the original database scan passes.

 Table 1: Four cases associated with FUP

 2. FUP2

In 1997, Cheung et al. [3] described the FUP2 algorithm,

which is a more generalized incremental technique than FUP. An

advanced version of FUP algorithm FUP2 is introduced for

updating the existing frequent items and association rules when

transactions are added to and deleted from the original database. It

can deal with insertion as well as deletion. FUP2 performs

efficiently not only on growing database but also on trimming

data. The difference between FUP2 and Apriori is that FUP2

separates the candidate item-sets in the new database into two

subsets in each pass of the algorithm. That is, in kth iteration,

candidate itemsets Ck is divided into Ak and Bk, where Ak is the

intersection of Ck and Lk, Lk is the the previous frequent itemsets
of size k in the old database. Bk is the remaining part of Ck not

included in the set Lk, that is, Bk= Ck - (Ck ∩ Lk). FUP2 algorithm

also has poor performance.

 3. UPDATE WITH EARLY PRUNING (UWEP)

 Ayan et al. proposed an algorithm [4] to update large

itemsets with early pruning. The benefit with UWEP are that it

scans the existing database at most once and new database exactly

once, and it generates and counts the minimum number of

candidate itemsets in order to determine the updated set of large

itemsets. Moreover, it prunes an itemset that will become small

from the set of generated candidates as soon as possible by a look-

ahead pruning technique. Thus, look-ahead pruning results in a

much smaller number of candidates in the computation of new
large itemsets in the updated database. Now suppose that X is

small in the updated database. So, any superset of X must also be

small in the updated database. UWEP differs from the previous

algorithms [4, 5] at this point, by pruning all supersets of an

itemset from the set of large itemsets in DB i.e. older database as

soon as it is known to be small. In the previous algorithms, a k-

itemset is only checked in the kth iteration, but UWEP does not

wait until the kth iteration in order to prune the supersets of an

itemset in LDB (large itemsets in older database) that are small in

LDB+db (large itemsets in updated database).

Let X be a k-itemset which contains items I1, . , Ik. An immediate

superset of X is a (k + l)-itemset which contains the k items in X
and an additional item Ik+1. If X ¢ LDB, then X ϵLDB+db only if

X ϵ Ldb. If X is large in DB, then X is also large in DB + db. In

this case, we put X into LDB+& with the total support. If X is

small in DB, we have to check whether it is large in DB+db or not.

However, we do not know supportDB(X). We can obtain it by

scanning DB. Thus this is more efficient technique than FUP2.

 4. A LOW-SCAN INCREMENTAL ASSOCIATION RULE

MAINTENANCE METHOD (MAAP)

This algorithm[6] makes use of an Apriori property, and

starting with the high level large itemsets in the older database

mining result, it computes the equivalent high level large item- sets

in the updated database as well as infers some low level large

itemsets in this updated database. Thus, this algorithm eliminates

the requirement of computing some low level large itemsets and

save on rule maintenance time. It is advantageous when high level

large itemsets generate a high percentage of low level large

itemsets. All non- empty subsets of a items frequentet must be

frequent. For example, if a frequent 3- itemset is L3={123}, we

IJSART - volume 1 Issue 1–JANUARY 2015 ISSN [ONLINE]: 2395-1052

Page | 40 www.ijsart.com

can immediately infer that the following itemsets are frequent as

well: {12}, {13}, {23}, {1}, {2}, {3}. Based on this principle,

when association rules are to be maintained in the updated new

database, the frequent itemsets can be computed from the highest

level frequent itemsets, that is, from Lk. If any itemset in Lk is still

frequent in the updated new database, its lower level subset

itemsets are included to their appropriate level frequent itemsets in

Lk-1, Lk-2, . . . , L1.

For example, since L3= {123} is confirmed to be still frequent in

the new database, this algorithm includes {12}, {13}, {23} to L2
and {1}, {2}, {3} to L1. By doing so, some computation time is

saved, the MAAP algorithm continues by checking if each itemset

in L3 = { ABC, ACD, BCD } is still frequent in the updated new

database. Since ABC is frequent in the new database, AB, AC, BC,

A, B, C are also frequent itemsets. Thus, ABC is included in L3‟

(Li‟ denotes the large i-itemsets in the updated new database),

include AB, AC, BC to L2‟, include A, B, C to L1‟.

The procedure of this algorithm starts by computing parts

of new large itemsets using only itemsets that were frequent in the

older database, and are guaranteed to still be frequent in the new

database because of a superset itemset in a higher level new

frequent itemset. Assume for each pass in the older database, we
divide the candidate itemsets into two parts. One part consists of

the frequent itemsets, another part is the small itemsets.Then in

second step, Compute for each updated new frequent itemset,

additional frequent item- sets that were frequent in the old database

but not computed in the first step because their superset higher

level itemset is small in the new updated database, but these older

lower level frequent itemsets may still be frequent in the newly

grown database. In third step, It Computes the rest of the itemsets

in the candidate itemsets that may be frequent itemsets in the new

updated database. Since by the end of step 2 above, we reduced the

sizes of all level infrequent itemsets and candidate sets, the
algorithm now takes each infrequent itemset Si = Ci- Li‟ and scans

the updated new database to determine if these itemsets are

frequent in the new updated database. If they are frequent, they are

included in the appropriate level new frequent itemset Li‟. In the

last step, all level i candidate sets are adjusted to include the new

frequent itemsets previously small in the older database at level (i-

1). This accomplishes the set computed above in Step 3 by

including all candidate sets that arise from these new frequent

itemsets.

 5. COMPRESSED AND ARRANGED TRANSACTION

SEQUENCE (CATS) TREE AND CANONICAL- ORDER

(CAN) TREE

 The FELINE Algorithm with the CATS Tree [7] extends

the idea of the FP-tree to improve storage compression, and allows

frequent-pattern mining without the generation of candidate

itemsets. The goal is to build a CATS tree as compact as possible.

All the items are arranged in descending local frequency order in
the CATS tree So, during the mining process, the FELINE

algorithm needs to traverse both upwards and downwards to

include frequent items. Extra cost is required for the swapping or

merging of nodes to make it compact.

CanTree [8] only requires one database scan. Items are

arranged according to some canonical order, which can be defined

by the user prior to the mining process or at runtime during the

mining process. Specially, all the items can be consistently

arranged in lexicographic order or alphabetical order. Once the

ordering is defined (say, for DB), items will follow this ordering in

the CanTrees for subsequently updated databases (e.g. DB∪db1,

DB∪db1∪db2, ...) even the frequency ordering of items in these

updated databases is different from DB. The ordering of items is

unaffected by the changes in frequency caused by incremental

updates. The frequency of a node in the CanTree is at least as high
as the sum of frequencies of its children. CanTree may not be as

compact as the corresponding CATS tree. However, it is important

to note that CATS trees do not necessarily minimize computation

or time because a lot of computation spent on finding mergeable

paths as well as traversing paths upwards and downwards, while

CanTrees significantly minimize computation and traversal time,

because they easily find mergeable paths and require only upward

path traversals.

 6. ASSOCIATION RULE MINING BY MODIFIED

APPROACH OF PROMISING FREQUENT ITEM-
 SET ALGORITHM BASED ON BUCKET SORT

APPROACH

 A new idea of incremental association rule mining which

does not scan original database. i.e. without scanning original

database it will scan only updated database. This incremental

association approach [9] for mining streamed data applies on the

dense data efficiently. This covered the old existed algorithm and

minimized the execution time and space complexity is also

reduced, and developed a new approach that directly compares the
updated as well as old record of the database and there is no need

to include the older database with new coming data and the used

buckets will give the accurate result.

The itemset which are not frequent in original database

but it could be frequent when updated transaction are added to

database is called promising frequent itemset. This algorithm uses

maximum support count of 1-itemset which is determined before

and this will estimate infrequent itemset of original database which

is going to be frequent when new transaction are added to the older

database.

Based on maximum support count of 1-itemset, promising itemset,
Support is calculated using follows :

Min_PIDBỤdb=min_suppDBUdb - (
max 𝑠𝑢𝑝𝑝

𝑡𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒
∗ 𝑖𝑛𝑐_𝑠𝑖𝑧𝑒).

It checks which item are frequent and which are

promising frequent item set and make list of both type. Then,
adding incremented database, calculating frequent itemset and

promising frequent itemset of incremented database. Now apply

bucket sort on updated promising frequent itemset list, then

calculating how many buckets are going to be frequent from

promising list, now adding support of needed bucket „s itemset to

the support of old promising itemset . Finally, move new frequent

itemset into old frequent itemset list and remove from promising

itemset list.

7. MINIMAL PERFECT HASHING AND PRUNING BASED

INCREMENTAL MINING ALGORITHM

IJSART - volume 1 Issue 1–JANUARY 2015 ISSN [ONLINE]: 2395-1052

Page | 41 www.ijsart.com

 DHP (Direct Hashing & Pruning) and MPIP (Multi-

Phase Indexing and Pruning) [10] algorithms employ hash tables to

reduce the database access times. They are for deavery beneficial

while dealing with the candidates of 2-itemsets i.e. C2, which is

the most time-consuming step in association rules mining.

Consequently, hashing-based association rule mining algorithms

are more time saving than Apriori- based algorithms. IMPHP

(Incremental Minimum Perfect Hashing and Pruning) algorithm

has following advantages : 1)All the candidate itemset will be

addressed by hashing into a hash table without collisions and their
minimum support can be calculated by a hash function for latter

process. 2.) When the database is updated, the arrangement of

hash table will not be re- constructed. There is only a need to scan

the updated parts and add new items into the end of the original

hash table. Hence, the efficiency can be improved significantly.

DHP employ hash functions to generate candidate itemsets

efficiently, and DHP also employs effective pruning techniques to

reduce the size of database. The potential-less itemsets will be

filteredout in early stage of candidate generation, and the scanning

of database will be avoided. Since DHP does not scan over the

database all the time, the performance is also enhanced. DHP is

particularly powerful for finding the frequent itemsets in starting
stage. It finds 1-itemsets and makes a hash table for C2, and then

determines L2 based on the hash table generated in previous stage.

In MPIP algorithm, a unique address will be assigned to each

itemset. It also enhances the accuracy of the hash table. All the

entries in the hash table is used for determining the support of

corresponding itemset. Because of such type of structure, the

repeated scanning of database can be avoided. Besides, the Bit

Vector in the hash table can filter out the candidate itemset and

directly indicate the large itemsets. Hence, once we construct the

hashing table, the frequent itemsets are also found.

In this algorithm, hashing address can be determined by a
minimum perfect hashing function and mining with incremental

transaction and item is also supported. In this section, we will

analyze the regularity in 2-itemsets first and then advanced it to the

case of 3-item and k-itemsets. Finally, the minimal perfect hashing

function is obtained. The minimum perfect hashing function of 2-

itemset in list as following:

Fn (j1 , j2) = 1 , for j1 = 1 and j2 = 2

Otherwise,

Fn (j1 , j2) = C2
j-1 + j1 .

Minimum perfect hashing function is employed in IMPHP

to avoid collisions and enhanced the incremental mining
efficiency. In addition, the arrangement of proposed hash table

structure does not need to be reconstructed again when new items

are added. All newly added items will be arranged at the end of the

original hash table. Hence, the efficiency can be enhanced

significantly when it applies for incremental association rule

mining.

III. COMPARATIVE STUDY OF

 EXISTING RESEARCHES

IV.CONCLUSION AND FUTURE WORK

Association rule mining can give very useful and

beneficial information, and improve the quality of business

decisions in market, web based survey and in multinational

companies. A number of incremental mining algorithms have been

developed by different researchers in need of applications which

uses record based database and where database increments rapidly.

In todays scenario, a static approach can‟t persist for a long. The

whole approach towards incremental mining is to make use of

previously mined knowledge and scan the database so as to

improve efficiency in terms of time and space . Most of the
algorithms try to reduce the number of scans of database and

maintain the association rules. Apriori based techniques like FUP

requires more than two scans in worst case and FUP2 requires two

complete scans of database, which are computationally less

efficient in terms of time. Tree based algorithms, like CAN tree

and FELINE, need only single scan of database. CATS tree

requires swapping, merging and splitting of tree nodes to make it

as compact as possible, since it uses frequency dependent ordering

and this drawback has been overcome in CAN tree. CAN tree uses

user defined ordering before or after the mining process. CATS

tree also takes large computation time in finding merge-able paths
and needs downward traversals during mining. DHP and MPIP

algorithms employ hash table structures to minimize the database

access times. In MPIP algorithm, a unique address will be assigned

to each itemset. It also enhances the accuracy of the hash table. All

the entries in the hash table are used for determining the support of

corresponding itemset. Due to such type of structure, the repeated

scanning of database can be avoided. Summarily, many algorithms

have contributed having goal of incremental mining, however still

there are scopes to enhance the efficiency of algorithms, generation

of new techniques.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. “Mining Association

Rules between Sets of Items in Large Databases”, Proceedings

IJSART - volume 1 Issue 1–JANUARY 2015 ISSN [ONLINE]: 2395-1052

Page | 42 www.ijsart.com

of the 1993 ACM SIGMOD International Conference on

Management of Data, pp. 207—216, May 1993.

[2] D. Cheung, J. Han, V. Ng, and C. Y. Wong. Large Databases:

An Incremental Updating Technique. Proceedings of the 12th

International Conference on Data Engineering, pp.106—114,

February 1996.

[3] D. Cheung, S. D. Lee, and B. Kao, “A General Incremental

Technique for Updating Discovered Association Rules”,

Proceedings of the Fifth International Conference On

Database Systems for Advanced Applications, pp. 185—194,
April 1997.

[4] N. F. Ayan, A. U. Tansel, and M. E. Arkun, “An Efficient

Algorithm to Update Large Itemsets with Early Pruning”,

Proceedings of the 5th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages

287 291, August 1999.

[5] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka, “An

Efficient Algorithm for the Incremental Updation of

Association Rules in Large Databases”, Proceeding of the 3rd

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 263- 266, August 1997.

[6] Z. Zhou and C. I. Ezeife. “A Low-Scan Incremental
Association Rule Maintenance Method”,Proceedings of the

14th Canadian Conference on Artificial Intelligence, June

2001.

[7] W. Cheung and O. R. Zaiane, “Incremental Mining of

Frequent Patterns without Candidate Generation or Support

Constraint”, Proceedings of the 7th International Database

Engineering and Application Symposium, July 2003.

[8] C. K. Leung, Q. I. Khan and T. Hoque, “CanTree: A Tree

Structure for Efficient Incremental Mining of Frequent

Patterns”, Proceedings of the Fifth IEEE International

Conference on Data Mining (ICDM‟05), 2005.
[9] Ms. Anju k.kakkad1, Ms. Anita Zal, “Incremental Association

Rule Mining by Modified Approach of Promising Frequent

Itemset Algorithm Based on Bucket Sort Approach”,

International Journal of Advanced Research in Computer and

Communication EngineeringVol. 2, Issue 11, November 2013.

[10] Chuang-Kai Chiou, Judy C. R. Tseng, “An Incremental

Mining Algorithm for Association Rules based on Minimal

Perfect Hashing and Pruning”, APWeb‟12 Proceedings of the

14th International conference on Web Technologies and

Applications pp. 106-113, Springer-Verlag Berlin, Heidelberg,

2012.
[11] Chin-Chen Chang, Yu-Chiang Li, Jung-San Lee, “An

Efficient Algorithm for Incremental Mining of Association

Rules”, Proceedings of the 15th IEEE International Workshop

on Research Issues in Data Engineering: Stream Data Mining

and Applications (RIDE-SDMA‟05), 2005.

